An Efficient Way to Calculate Lagrange?�s Equations of Motion in Classical Mechanics

2020 ◽  
Vol 70 (11) ◽  
pp. 1003-1008
Author(s):  
Jisoo KYOUNG*
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


Author(s):  
M.A. Bubenchikov ◽  
◽  
A.M. Bubenchikov ◽  
D.V. Mamontov ◽  
◽  
...  

The aim of this work is to apply classical mechanics to a description of the dynamic state of C20@C80 diamond complex. Endohedral rotations of fullerenes are of great interest due to the ability of the materials created on the basis of onion complexes to accumulate energy at rotational degrees of freedom. For such systems, a concept of temperature is not specified. In this paper, a closed description of the rotation of large molecules arranged in diamond shells is obtained in the framework of the classical approach. This description is used for C20@C80 diamond complex. Two different problems of molecular dynamics, distinguished by a fixing method for an outer shell of the considered bimolecular complex, are solved. In all the cases, the fullerene rotation frequency is calculated. Since a class of possible motions for a single carbon body (molecule) consists of rotations and translational displacements, the paper presents the equations determining each of these groups of motions. Dynamic equations for rotational motions of molecules are obtained employing the moment of momentum theorem for relative motions of the system near the fullerenes’ centers of mass. These equations specify the operation of the complex as a molecular pendulum. The equations of motion of the fullerenes’ centers of mass determine vibrations in the system, i.e. the operation of the complex as a molecular oscillator.


2021 ◽  
pp. 24-34
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The purpose of this chapter is to recall the principles of Lagrangian and Hamiltonian classical mechanics. Many results are presented without detailed proofs. We obtain the Euler–Lagrange equations of motion, and show the equivalence with Hamilton’s equations. We derive Noether’s theorem and show the connection between symmetries and conservation laws. These principles are extended to a system with an infinite number of degrees of freedom, i.e. a classical field theory. The invariance under a Lie group of transformations implies the existence of conserved currents. The corresponding charges generate, through the Poisson brackets, the infinitesimal transformations of the fields as well as the Lie algebra of the group.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650095
Author(s):  
Zeki Kasap

Twistor spaces are certain complex three-manifolds, which are associated with special conformal Riemannian geometries on four-manifolds. Also, classical mechanic is one of the major subfields for mechanics of dynamical system. A dynamical system has a state determined by a collection of real numbers, or more generally by a set of points in an appropriate state space for classical mechanic. Euler–Lagrange equations are an efficient use of classical mechanics to solve problems using mathematical modeling. On the other hand, Weyl submitted a metric with a conformal transformation for unified theory of classical mechanic. This paper aims to introduce Euler–Lagrage partial differential equations (mathematical modeling, the equations of motion according to the time) for the movement of objects on twistor space and also to offer a general solution of differential equation system using the Maple software. Additionally, the implicit solution of the equation will be obtained as a result of a special selection of graphics to be drawn.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1734 ◽  
Author(s):  
Madeline Clyburn ◽  
Charles D. Lane

In this paper, we use the classical limit of the Standard-Model Extension to explore some generic features of Lorentz violation. This classical limit is formulated at the level of undergraduate physics. We first discuss the general equations of motion and then concentrate on three specific systems. First, we consider the theoretical aspects of pendulum motion in the presence of Lorentz violation, followed by some sample experimental results. The experimental bounds we achieve, in the range of 10−3, are not competitive with the current bounds from atomic clocks; rather, our experiment illustrates some common ideas and methods that appear in Lorentz-violation studies. We then discuss how Newton’s 2nd Law must be treated with caution in our model. Finally, we introduce a computational simulation of a binary star system that is perturbed by Lorentz-violating effects. This simulation shows some interesting behavior that could be the subject of future analytical studies.


1964 ◽  
Vol 17 (4) ◽  
pp. 431 ◽  
Author(s):  
LJ Tassie ◽  
HA Buchdahl

The invariance of a system under a given transformation of coordinates is usually taken to mean that its Lagrangian is invariant under that transformation. Consequently, whether or not the system is invariant will depend on the gauge used in describing the system. By defining invariance of a system to mean the invariance of its equations of motion, a gauge-independent theory of symmetry properties is obtained for classical mechanics in both the Lagrangian and Hamiltonian forms. The conserved quantities associated with continuous symmetry transformations are obtained. The system of a single particle moving in a given electromagnetic field is considered in detail for various symmetries of the electromagnetic field, and the appropriate conserved quantities are found.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1401 ◽  
Author(s):  
Sorin Vlase ◽  
Adrian Eracle Nicolescu ◽  
Marin Marin

In classical mechanics, determining the governing equations of motion using finite element analysis (FEA) of an elastic multibody system (MBS) leads to a system of second order differential equations. To integrate this, it must be transformed into a system of first-order equations. However, this can also be achieved directly and naturally if Hamilton’s equations are used. The paper presents this useful alternative formalism used in conjunction with the finite element method for MBSs. The motion equations in the very general case of a three-dimensional motion of an elastic solid are obtained. To illustrate the method, two examples are presented. A comparison between the integration times in the two cases presents another possible advantage of applying this method.


1—In a preceding paper a relativistic formulation of the law of gravitation was obtained, in the flat private space of any fundamental observer in the substratum or smoothed-out universe, in terms of r -measures. In other papers, general formulae have been given for the transformation of forces, equations of motion, etc., from t - measures to r -measures. They may be at once applied to express the law of gravitation in r -measures, in the public hyperbolic space de 2 in which the extra-galactic nebular nuclei appear at rest. The present paper carries out this programme, and so obtains the law of gravitation in the form appropriate to the r -dynamics, which corresponds to classical mechanics. 2—Let O be any fundamental particle of the substratum, P the position vector of any other particle P with respect to O , at epoch t , in t -measure. The t -clocks of the fundamental observers have been graduated so that the fundamental particles appear in uniform (Whitrow 1935) relative motion.


The dynamics of unimolecular reactions can be modelled by classical mechanics for the motion of nuclei on Born-Oppenheimer or other effective potential surfaces, by the corresponding quantum mechanical equations of motion and, perhaps, by quantum statistical treatments. In this paper I provide a synopsis of fundamental, qualitatively important effects arising from the quantum nature of intramolecular dynamics, as opposed to classical mechanics, and illustrate these with theoretical predictions and experimental examples from the work of my group in Zurich. These include quantum nonlinearity in infrared (IR) multiphoton excitation and reaction, non-classical wavepacket spreading in the Fermi resonance coupled modes in CHX3 molecules, effects of zero point energy and angular momentum in unimolecular reactions, nuclear spin symmetry conservation and inter con version and the hypothetical effects arising from the violation of parity and time reversal symmetry in unimolecular reactions. Specific applications to experiments include IR laser chemistry of CF3I and CF3Br, IR spectroscopy and dynamics of CHF3 and predissociation spectra and dynamics of II


Sign in / Sign up

Export Citation Format

Share Document