scholarly journals Chemical parameters and antioxidant activity of turning color natural-style table olives of the Sigoise cultivar

2021 ◽  
Vol 72 (3) ◽  
pp. e419
Author(s):  
F. Ait Chabane ◽  
A. Tamendjari ◽  
P. Rovellini ◽  
C. Romero ◽  
E. Medina

A chemical characterization of turning color table olives of the Sigoise variety was made through their processing as natural-style. Polyphenols, sugars, tocopherols, fatty acids, and antioxidant activity in the olives were monitored throughout the elaboration process. Oleuropein, salidroside, hydroxytyrosol 4-glucoside, rutin, ligustroside and verbascoside showed a decrease of 16.90-83.34%, while hydroxytyrosol increased during the first months of brining. Glucose was consumed by 90% due to the metabolism of the fermentative microbiota. The tocopherol content remained stable during the process and only the α-tocopherol decreased. The fatty acids were not affected. The loss in antioxidant compounds resulted in a decrease in the percentage of DPPH radical inhibition from 75.91% in the raw fruit to 44.20% after 150 days of brining. Therefore, the turning color natural table olives of the Sigoise variety are a good source of bioactive compounds.

2013 ◽  
Vol 94 (2) ◽  
pp. 731-736 ◽  
Author(s):  
Songtao Ai ◽  
Xindong Fan ◽  
Linfeng Fan ◽  
Qi Sun ◽  
Yu Liu ◽  
...  

1999 ◽  
Vol 46 (4) ◽  
pp. 1001-1009
Author(s):  
S F Izmailov ◽  
G Y Zhiznevskaya ◽  
L V Kosenko ◽  
G N Troitskaya ◽  
N N Kudryavtseva ◽  
...  

Chemical composition of lipopolysaccharide (LPS) isolated from an effective (97) and ineffective (87) strains of R. l. viciae has been determined. LPS preparations from the two strains contained: glucose, galactose, mannose, fucose, arabinose, heptose, glucosamine, galactosamine, quinovosamine, and 3-N-methyl-3,6-dideoxyhexose, as well as glucuronic, galacturonic and 3-deoxyoctulosonic acid. The following fatty acids were identified: 3-OH 14:0, 3-OH 15:0, 3-OH 16:0, 3-OH 18:0 and 27-OH 28:0. The ratio of 3-OH 14:0 to other major fatty acids in LPS 87 was higher that in LPS 97. SDS/PAGE profiles of LPS indicated that, in lipopolysaccharides, relative content of S form LPS I to that of lower molecular mass (LPS II) was much higher in the effective strain 97 than in 87. All types of polysaccharides exo-, capsular-, lipo, (EPS, CPS, LPS, respectively) examined possessed the ability to bind faba bean lectin. The degree of affinity of the host lectin to LPS 87 was half that to LPS 97. Fatty acids (FA) composition from bacteroids and peribacteroid membrane (PBM) was determined. Palmitic, stearic and hexadecenoic acids were common components found in both strains. There was a high content of unsaturated fatty acids in bacteroids as well as in PBM lipids. The unsaturation index in the PBM formed by strain 87 was lower than in the case of strain 97. Higher ratio of 16:0 to 18:1 fatty acids was characteristic for PMB of the ineffective strain.


2017 ◽  
Vol 20 (9) ◽  
pp. 2016-2027 ◽  
Author(s):  
Giacomo Luigi Petretto ◽  
Carlo Ignazio Giovanni Tuberoso ◽  
Maurizio Antonio Fenu ◽  
Jonathan P. Rourke ◽  
Omar Belhaj ◽  
...  

2012 ◽  
Vol 30 (No. 4) ◽  
pp. 351-357 ◽  
Author(s):  
Z. Réblová ◽  
J. Fišnar ◽  
D. Tichovská ◽  
M. Doležal ◽  
K. Joudalová

The ability of phenolic acids (ferulic, gallic, protocatechuic, and sinapic; 600 mg/kg) to protect naturally present a-tocopherol was tested during the heating of sunflower oil on a hot plate set at 120, 150, 180, 210, or 240°C, and during the heating of rapeseed, olive and soybean oils on a hot plate set at 180°C. In all the studied conditions, a-tocopherol was significantly protected only by gallic acid. This phenolic acid prolonged the half-life of a-tocopherol (calculated as the time needed for the a-tocopherol content to decrease to 50% of the original value) typically two- to four-fold. Hence the ability of phenolic acids to protect a-tocopherol in bulk oils does not markedly depend on the experimental conditions as is seen in antioxidant activity, i.e. in the ability of antioxidants to protect fatty acids.  


2019 ◽  
Vol 16 (5) ◽  
pp. e1900051 ◽  
Author(s):  
Abdelsamed I. Elshamy ◽  
Ahmed M. Abd‐ElGawad ◽  
Abd El‐Nasser G. El Gendy ◽  
Abdulaziz M. Assaeed

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2176
Author(s):  
Meriam Missaoui ◽  
Isabella D’Antuono ◽  
Massimiliano D’Imperio ◽  
Vito Linsalata ◽  
Sadok Boukhchina ◽  
...  

The Opuntia ficus indica (L.) (OFI) is used as a nutritional and pharmaceutical agent in various dietary and value added products. This study underlines the possible use of native prickly pear cladode powder as a functional ingredient for health-promoting food production. To summarise, chemical characterization of polyphenols, minerals and soluble dietary fibre was performed; furthermore, the antioxidant activity and bioaccessibility of polyphenols and minerals were assessed. Eleven compounds between phenolic acids and flavonoids were identified, with piscidic acid and isorhamnetin derivatives being the most abundant. Opuntia’s dietary fibre was mainly constituted of mucilage and pectin, and was composed of arabinose, galactose, glucose, mannose, rhamnose, and xylose sugars. The polyphenols’ bioaccessibility was very high: piscidic acid at 200%, eucomic and ferulic acids >110% and flavonoids from 89% to 100%. The prickly pear cladode powder is also a source of minerals, as cations (calcium, sodium, potassium and magnesium) and anions (sulphate and chloride), with high magnesium bioaccessibilty (93%). OFI powder showed good capacity of radical scavenging measured by DPPH and ABTS methods, with 740 and 775 μmol Trolox/100 g OFI, respectively. Finally, the presented results allow the consideration of this natural product as a source of several essential nutrients, with a possible use in the food industry as a functional ingredient.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Gabriel D. Fernandes ◽  
Raquel B. Gómez-Coca ◽  
María del Carmen Pérez-Camino ◽  
Wenceslao Moreda ◽  
Daniel Barrera-Arellano

The aim of this work was to characterize the major and minor compounds of laboratory-extracted and commercial oils from sweet almond, hazelnut, and pecan nut. Oils from sweet almond, hazelnut, and pecan nut were obtained by means of an expeller system, while the corresponding commercial oils were provided from Vital Âtman (BR). The contents of triacylglycerols, fatty acids, aliphatic and terpenic alcohols, desmethyl-, methyl-, and dimethylsterols, squalene, and tocopherols were determined. Oleic, palmitic, and linoleic acids were the main fatty acids. Desmethylsterols were the principal minor compounds withβ-sitosterol being the most abundant component. Low amounts of aliphatic and terpenic alcohols were also found. The major tocopherol in hazelnut and sweet almond oils wasα-tocopherol, whereasγ-tocopherol prevailed in pecan nut oil. Principal component analysis made it possible for us to differentiate among samples, as well as to distinguish between commercial and laboratory-extracted oils. Heatmap highlighted the main variables featuring each sample. Globally, these results have brought a new approach on nut oil characterization.


2018 ◽  
Vol 3 (02) ◽  
pp. 150-157
Author(s):  
Asad Amir ◽  
Neelesh Kapoor ◽  
Hirdesh Kumar ◽  
Mohd. Tariq ◽  
Mohd. Asif Siddiqui

Sandalwood is a commercially and culturally important plant species belonging to the family Santalaceae and the genus Santalum. In Indian sandalwood is renowned for its oil, which is highly rated for its sweet, fragrant, persistent aroma and the fixative property which is highly demanded by the perfume industry. For better production and varieties, requires to understanding the functions of proteins, their analysis and characterization of proteins sequences and their structures, their localizations in cell and their interaction with other functional partner. Due to limited number of in silico studies on sandalwood, in the present study we have performed in silico analysis by characterization of sandalwood proteins. Total 23 proteins were obtained and characterization using UniProtKB, identifying their physico-chemical parameters using ProtParam tool and prediction of their secondary structure elements using GOR of all 23 proteins.


Molecules ◽  
2011 ◽  
Vol 16 (11) ◽  
pp. 9025-9040 ◽  
Author(s):  
Anabela Sousa ◽  
Susana Casal ◽  
Albino Bento ◽  
Ricardo Malheiro ◽  
M. Beatriz P.P. Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document