scholarly journals An Improved Early Student’s Academic Performance Prediction Using Deep Learning

Author(s):  
Nida Muhammad Aslam ◽  
Irfan Ullah Khan ◽  
Leena H. Alamri ◽  
Ranim S. Almuslim

Nowadays due to technological revolution huge amount of data is generated in every fields including education as well. Extracting the useful insights from consequential data is a very critical task. Moreover, advancement in the deep learning techniques resulted in the effective prediction and analysis of data. In our proposed study deep learning model is be used for predicting the student’s academic performance. Experiments were performed using the two courses da-ta i.e., mathematics and Portuguese course. The data set contains demograph-ic, social, educational and students course grade data. The data set suffers from the imbalance, SMOTE (synthetic minority oversampling technique) is used. We evaluate the performance of the proposed model using several fea-ture sets and evaluation measures such as precision, recall, F-score, and ac-curacy. The result showed the significance of the proposed deep learning mod-el in early prediction of the students’ academic performance. The model achieved an accuracy of 0.964 for Portuguese course data set and 0.932 using mathematics course data set. Similarly, the precision of 0.99 for Portuguese and 0.94 for mathematics.

Author(s):  
S. M. Abdullah Al Shuaeb ◽  
Shamsul Alam ◽  
Md. Mizanur Rahman ◽  
Md. Abdul Matin

Students’ academic achievement plays a significant role in the polytechnic institute. It is an important task for the technical student to achieve good results. It becomes more challenging by virtue of the huge amount of data in the polytechnic student databases. Recently, the lack of monitoring of academic activities and their performance has not been harnessed. This is not a good way to evaluate the academic performance of polytechnic students in Bangladesh at present. The study on existing academic prediction systems is still not enough for the polytechnic institutions. Consequently, we have proposed a novel technique to improve student academic performance. In this study, we have used the deep neural network for predicting students' academic final marks. The main objective of this paper is to improve students' results. This paper also explains how the prediction deep neural network model can be used to recognize the most vital attributes in a student's academic data namely midterm_marks, class_ test, attendance, assignment, and target_ marks. By using the proposed model, we can more effectively improve polytechnic student achievement and success.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Demeke Endalie ◽  
Getamesay Haile

For decades, machine learning techniques have been used to process Amharic texts. The potential application of deep learning on Amharic document classification has not been exploited due to a lack of language resources. In this paper, we present a deep learning model for Amharic news document classification. The proposed model uses fastText to generate text vectors to represent semantic meaning of texts and solve the problem of traditional methods. The text vectors matrix is then fed into the embedding layer of a convolutional neural network (CNN), which automatically extracts features. We conduct experiments on a data set with six news categories, and our approach produced a classification accuracy of 93.79%. We compared our method to well-known machine learning algorithms such as support vector machine (SVM), multilayer perceptron (MLP), decision tree (DT), XGBoost (XGB), and random forest (RF) and achieved good results.


2021 ◽  
Vol 33 (6) ◽  
pp. 367-373
Author(s):  
Geun Se Lee ◽  
Dong Hyeon Jeong ◽  
Yong Ho Moon ◽  
Won Kyung Park ◽  
Jang Won Chae

In this study, deep learning model was set up to predict the wave heights inside a harbour. Various machine learning techniques were applied to the model in consideration of the transformation characteristics of offshore waves while propagating into the harbour. Pohang New Port was selected for model application, which had a serious problem of unloading due to swell and has lots of available wave data. Wave height, wave period, and wave direction at offshore sites and wave heights inside the harbour were used for the model input and output, respectively, and then the model was trained using deep learning method. By considering the correlation between the time series wave data of offshore and inside the harbour, the data set was separated into prevailing wave directions as a pre-processing method. As a result, It was confirmed that accuracy and stability of the model prediction are considerably increased.


2020 ◽  
Vol 11 (5) ◽  
pp. 75-87
Author(s):  
Fatima Abdalbagi ◽  
Serestina Viriri ◽  
Mohammed Tajalsir Mohammed

In computer vision, image segmentation is defined as process of a partition of an image in a number of regions with homogeneous features. The region of our interest here is the liver. Prior to the deep learning revolution traditional handcrafted features were used for liver segmentation but with deep learning the features are obtained automatically. There are many semiautomatic and fully automatic approaches have been proposed to improve the liver segmentation procedure some of them use deep learning techniques for Segmentation and other one use a Classical Based method for Segmentation. In this paper we aim to enhance our previous work which we were proposed a Batch Normalization After All - Convolutional Neural Network (BATA-Convnet) model to segment the liver, where the Dice is equal to 0.91% when implement our BATA Convnet using MICCA dataset and Dice is equal to 0.84% when implement it using 3D-IRCAD dataset. Here in this paper we propose BATA-Unet model for liver segmentation, it's based on Unet architecture as backbone but differ in we added a batch-normalization layer an after each convolution layer in both construction path and expanding path. The proposed method was able to achieve highest dice similarity coefficient than the previous work where for MICCA dataset Dice =0.97% and for 3D-IRCAD dataset =0.96%. Also our proposed model outperformed other state-of-the-art model when we compare it with them.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6346
Author(s):  
Ankita Anand ◽  
Shalli Rani ◽  
Divya Anand ◽  
Hani Moaiteq Aljahdali ◽  
Dermot Kerr

The role of 5G-IoT has become indispensable in smart applications and it plays a crucial part in e-health applications. E-health applications require intelligent schemes and architectures to overcome the security threats against the sensitive data of patients. The information in e-healthcare applications is stored in the cloud which is vulnerable to security attacks. However, with deep learning techniques, these attacks can be detected, which needs hybrid models. In this article, a new deep learning model (CNN-DMA) is proposed to detect malware attacks based on a classifier—Convolution Neural Network (CNN). The model uses three layers, i.e., Dense, Dropout, and Flatten. Batch sizes of 64, 20 epoch, and 25 classes are used to train the network. An input image of 32 × 32 × 1 is used for the initial convolutional layer. Results are retrieved on the Malimg dataset where 25 families of malware are fed as input and our model has detected is Alueron.gen!J malware. The proposed model CNN-DMA is 99% accurate and it is validated with state-of-the-art techniques.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2022 ◽  
pp. 1-12
Author(s):  
Amin Ul Haq ◽  
Jian Ping Li ◽  
Samad Wali ◽  
Sultan Ahmad ◽  
Zafar Ali ◽  
...  

Artificial intelligence (AI) based computer-aided diagnostic (CAD) systems can effectively diagnose critical disease. AI-based detection of breast cancer (BC) through images data is more efficient and accurate than professional radiologists. However, the existing AI-based BC diagnosis methods have complexity in low prediction accuracy and high computation time. Due to these reasons, medical professionals are not employing the current proposed techniques in E-Healthcare to effectively diagnose the BC. To diagnose the breast cancer effectively need to incorporate advanced AI techniques based methods in diagnosis process. In this work, we proposed a deep learning based diagnosis method (StackBC) to detect breast cancer in the early stage for effective treatment and recovery. In particular, we have incorporated deep learning models including Convolutional neural network (CNN), Long short term memory (LSTM), and Gated recurrent unit (GRU) for the classification of Invasive Ductal Carcinoma (IDC). Additionally, data augmentation and transfer learning techniques have been incorporated for data set balancing and for effective training the model. To further improve the predictive performance of model we used stacking technique. Among the three base classifiers (CNN, LSTM, GRU) the predictive performance of GRU are better as compared to individual model. The GRU is selected as a meta classifier to distinguish between Non-IDC and IDC breast images. The method Hold-Out has been incorporated and the data set is split into 90% and 10% for training and testing of the model, respectively. Model evaluation metrics have been computed for model performance evaluation. To analyze the efficacy of the model, we have used breast histology images data set. Our experimental results demonstrated that the proposed StackBC method achieved improved performance by gaining 99.02% accuracy and 100% area under the receiver operating characteristics curve (AUC-ROC) compared to state-of-the-art methods. Due to the high performance of the proposed method, we recommend it for early recognition of breast cancer in E-Healthcare.


Author(s):  
Chong Chen ◽  
Ying Liu ◽  
Xianfang Sun ◽  
Shixuan Wang ◽  
Carla Di Cairano-Gilfedder ◽  
...  

Over the last few decades, reliability analysis has gained more and more attention as it can be beneficial in lowering the maintenance cost. Time between failures (TBF) is an essential topic in reliability analysis. If the TBF can be accurately predicted, preventive maintenance can be scheduled in advance in order to avoid critical failures. The purpose of this paper is to research the TBF using deep learning techniques. Deep learning, as a tool capable of capturing the highly complex and nonlinearly patterns, can be a useful tool for TBF prediction. The general principle of how to design deep learning model was introduced. By using a sizeable amount of automobile TBF dataset, we conduct an experiential study on TBF prediction by deep learning and several data mining approaches. The empirical results show the merits of deep learning in performance but comes with cost of high computational load.


2020 ◽  
Vol 3 (1) ◽  
pp. 445-454
Author(s):  
Celal Buğra Kaya ◽  
Alperen Yılmaz ◽  
Gizem Nur Uzun ◽  
Zeynep Hilal Kilimci

Pattern classification is related with the automatic finding of regularities in dataset through the utilization of various learning techniques. Thus, the classification of the objects into a set of categories or classes is provided. This study is undertaken to evaluate deep learning methodologies to the classification of stock patterns. In order to classify patterns that are obtained from stock charts, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long-short term memory networks (LSTMs) are employed. To demonstrate the efficiency of proposed model in categorizing patterns, hand-crafted image dataset is constructed from stock charts in Istanbul Stock Exchange and NASDAQ Stock Exchange. Experimental results show that the usage of convolutional neural networks exhibits superior classification success in recognizing patterns compared to the other deep learning methodologies.


Sign in / Sign up

Export Citation Format

Share Document