scholarly journals NECS-based Cache Management in the Information Centric Networking

Author(s):  
Nour El Houda Fethellah ◽  
Hafida Bouziane ◽  
Abdallah Chouarfia

The Information Centric Networking ICN architectures are proposed to overcome the problems of the actual internet architecture. One of the main straight points of the ICN architectures is the in-network caching. The ICN performance is influenced by efficiency of the adopted caching strategy which manages the contents in the network and decides where caching them. However, the major issue which faces the caching strategies in the ICN architectures is the strategic election of the cache routers to store the data through its delivery path. This will reduce congestion, optimize the distance between the consumers and the required data furthermore improve latency and alleviate the viral load on the servers.  In this paper, we propose a new efficient caching strategy for the Named Data Networking architecture NDN named NECS which is the most promising architecture between all the ICN architectures. The proposed strategy reduces the traffic redundancy, eliminates the useless replication of contents and improves the replay time for users due to the strategic position of cache routers. Besides, we evaluate the performance of this proposed strategy and we compare it with three other NDN caching strategies, using the simulator network environment NdnSIM. On the basis of the simulations carried out, we obtained interesting and convincing results.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4407 ◽  
Author(s):  
Meng ◽  
Naeem ◽  
Ali ◽  
Zikria ◽  
Kim

Information dissemination in current Vehicular Sensor Networks (VSN) depends on the physical location in which similar data is transmitted multiple times across the network. This data replication has led to several problems, among which resource consumption (memory), stretch, and communication latency due to the lake of data availability are the most crucial. Information-Centric Networking (ICN) provides an enhanced version of the internet that is capable of resolving such issues efficiently. ICN is the new internet paradigm that supports innovative communication systems with location-independent data dissemination. The emergence of ICN with VSNs can handle the massive amount of data generated from heterogeneous mobile sensors in surrounding smart environments. The ICN paradigm offers an in-network cache, which is the most effective means to reduce the number of complications of the receiver-driven content retrieval process. However, due to the non-linearity of the Quality-of-Experience (QoE) in VSN systems, efficient content management within the context of ICN is needed. For this purpose, this paper implements a new distributed caching strategy (DCS) at the edge of the network in VSN environments to reduce the number of overall data dissemination problems. The proposed DCS mechanism is studied comparatively against existing caching strategies to check its performance in terms of memory consumption, path stretch ratio, cache hit ratio, and content eviction ratio. Extensive simulation results have shown that the proposed strategy outperforms these benchmark caching strategies.


2019 ◽  
Vol 11 (3) ◽  
pp. 74 ◽  
Author(s):  
Rute C. Sofia ◽  
Paulo M. Mendes

Information-centric networking integrates by design a pull-based model which brings in advantages in terms of control as well as of in-network caching strategies. Currently, ICN main areas of action concern content distribution and IoT, both of which are environments that often require support for periodic and even-triggered data transmission. Such environments can benefit from push-based communication to achieve faster data forwarding. This paper provides an overview on the current push-based mechanisms that can be applied to information-centric paradigms, explaining the trade-off associated with the different approaches. Moreover, the paper provides design guidelines for integrating push communications in information-centric networking, having as example the application of this networking architecture in IoT environments.


2021 ◽  
Vol 11 (9) ◽  
pp. 4064
Author(s):  
Muktar Hussaini ◽  
Muhammad Ali Naeem ◽  
Byung-Seo Kim

Named data networking (NDN) is designed as a clean-slate Internet architecture to replace the current IP Internet architecture. The named data networking was proposed to offer vast advantages, especially with the advent of new content distributions in IoT, 5G and vehicular networking. However, the architecture is still facing challenges for managing content producer mobility. Despite the efforts of many researchers that curtailed the high handoff latency and signaling overhead, there are still some prominent challenges, such as non-optimal routing path, long delay for data delivery and unnecessary interest packet losses. This paper proposed a solution to minimize unnecessary interest packet losses, delay and provide data path optimization when the mobile producer relocates by using mobility update, broadcasting and best route strategies. The proposed solution is implemented, evaluated and benchmarked with an existing Kite solution. The performance analysis result revealed that our proposed Optimal Producer Mobility Support Solution (OPMSS) minimizes the number of unnecessary interest packets lost on average by 30%, and an average delay of 25% to 30%, with almost equal and acceptable signaling overhead costs. Furthermore, it provides a better data packet delivery route than the Kite solution.


2019 ◽  
Vol 11 (11) ◽  
pp. 241 ◽  
Author(s):  
Ioanna Angeliki Kapetanidou ◽  
Christos-Alexandros Sarros ◽  
Vassilis Tsaoussidis

Information-Centric Networking (ICN) has arisen as an architectural solution that responds to the needs of today’s overloaded Internet, departing from the traditional host-centric access paradigm. In this paper we focus on Named Data Networking (NDN), the most prominent ICN architecture. In the NDN framework, disseminated content is at the core of the design and providing trusted content is essential. In this paper, we provide an overview of reputation-based trust approaches, present their design trade-offs and argue that these approaches can consolidate NDN trust and security by working complementary to the existing credential-based schemes. Finally, we discuss future research directions and challenges.


2014 ◽  
Vol 543-547 ◽  
pp. 3555-3560 ◽  
Author(s):  
Xin Xin Sun ◽  
Xing Wei Wang ◽  
Jie Li ◽  
Min Huang

Internet has become as a social infrastructure. The current Internet architecture based on TCP/IP is faced with many challenges. This fact makes the clean slate design of future Internet architecture represented by ICN (Information-Centric Networking) be a hot research topic. In this paper, a novel routing scheme for ICN (Information-Centric Networking) is proposed. On the basis of name-based routing, a process was designed to look for other available interface through which the backtracking-condition-met interest packet will be forwarded, which can reduce the network blocking rate. Moreover, FIB (Forwarding Information Base) of neighbor nodes will be modified when data packets go through a router, which can realize the efficient use of cache. Also, a concept of "popularity" is introduced to improve CS (Content Store) hit rate. The proposed routing scheme is implemented on NSFNET by simulation, and the experimental results have shown that it is feasible and effective.


IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 8433-8443 ◽  
Author(s):  
Huan Yan ◽  
Deyun Gao ◽  
Wei Su ◽  
Chuan Heng Foh ◽  
Hongke Zhang ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2889 ◽  
Author(s):  
Rungrot Sukjaimuk ◽  
Quang Nguyen ◽  
Takuro Sato

Information-Centric Networking (ICN) is a new Internet architecture design, which is considered as the global-scale Future Internet (FI) paradigm. Though ICN offers considerable benefits over the existing IP-based Internet architecture, its practical deployment in real life still has many challenges, especially in the case of high congestion and limited power in a sensor enabled-network for the Internet of Things (IoT) era. In this paper, we propose a smart congestion control mechanism to diminish the network congestion rate, reduce sensor power consumptions, and enhance the network performance of ICN at the same time to realize a complete green and efficient ICN-based sensor networking model. The proposed network system uses the chunk-by-chunk aggregated packets according to the content popularity to diminish the number of exchanged packets needed for data transmission. We also design the sensor power-based cache management strategy, and an adaptive Markov-based sensor scheduling policy with selective sensing algorithm to further maximize power savings for the sensors. The evaluation results using ndnSIM (a widely-used ICN simulator) show that the proposed model can provide higher network performance efficiency with lower energy consumption for the future Internet by achieving higher throughput with higher cache hit rate and lower Interest packet drop rate as we increase the number of IoT sensors in ICN.


Sign in / Sign up

Export Citation Format

Share Document