scholarly journals On-site Smart Operation and Maintenance System for Substation Equipment Based on Mobile Network

2018 ◽  
Vol 14 (03) ◽  
pp. 66 ◽  
Author(s):  
Lin Cheng ◽  
Wenshan Hu ◽  
Zhengyang Liu ◽  
Wei Cai

The maintenance of substations is crucial for the safety of the electrical grid and power industry.<strong> </strong>However, for long time, the maintenance teams in the field and the experts in the power companies are divided. The data and expertise exchanges between the on-site maintenance teams and data center are delayed due to the lack of effective communication. This paper introduces an on-site smart operation maintenance system for substation equipment based on mobile network. It is able to establish real-time communication and data exchange channels between the maintenance teams and data center. It consists of an operation and maintenance system platform located on the data center side and smart operation and maintenance boxes with mobile APP which are carried to the field side by the maintenance teams. As the kernel of the system, the smart boxes are bridges between the data center and operation sites. On one hand, it is able to formally upload data to the data center in real-time. One the other hand, the operation and maintenance personnel are able to call for help from the resource on the data center anytime. Using the system proposed in the paper, both efficiency of the operation and maintenance and the normalization of the data can be improved.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhenxin Feng ◽  
Yi Jiang ◽  
Yuting Luo ◽  
Kun Zhao ◽  
Guocheng Ding ◽  
...  

This paper introduces a networked closed-loop model for smart on-site maintenance of substation equipment using mobile networks, which is composed of a field-side Smart Operation and Maintenance (SOM) box with its related APP and a centre-side system platform for Operation and Maintenance (OM). As a bridge to connect the operation sites and data centre, the networked equipment maintenance model enables bidirectional communication among the management, maintenance teams, and diversely located equipment. This model not only realizes the formal data uploading in real-time, but also can provide the workers on site with guidance from the data centre.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1881
Author(s):  
Jesús Lázaro ◽  
Armando Astarloa ◽  
Mikel Rodríguez ◽  
Unai Bidarte ◽  
Jaime Jiménez

Since the 1990s, the digitalization process has transformed the communication infrastructure within the electrical grid: proprietary infrastructures and protocols have been replaced by the IEC 61850 approach, which realizes interoperability among vendors. Furthermore, the latest networking solutions merge operational technologies (OTs) and informational technology (IT) traffics in the same media, such as time-sensitive networking (TSN)—standard, interoperable, deterministic, and Ethernet-based. It merges OT and IT worlds by defining three basic traffic types: scheduled, best-effort, and reserved traffic. However, TSN demands security against potential new cyberattacks, primarily, to protect real-time critical messages. Consequently, security in the smart grid has turned into a hot topic under regulation, standardization, and business. This survey collects vulnerabilities of the communication in the smart grid and reveals security mechanisms introduced by international electrotechnical commission (IEC) 62351-6 and how to apply them to time-sensitive networking.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


Healthcare ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 285
Author(s):  
Chuchart Pintavirooj ◽  
Tanapon Keatsamarn ◽  
Treesukon Treebupachatsakul

Telemedicine has become an increasingly important part of the modern healthcare infrastructure, especially in the present situation with the COVID-19 pandemics. Many cloud platforms have been used intensively for Telemedicine. The most popular ones include PubNub, Amazon Web Service, Google Cloud Platform and Microsoft Azure. One of the crucial challenges of telemedicine is the real-time application monitoring for the vital sign. The commercial platform is, by far, not suitable for real-time applications. The alternative is to design a web-based application exploiting Web Socket. This research paper concerns the real-time six-parameter vital-sign monitoring using a web-based application. The six vital-sign parameters are electrocardiogram, temperature, plethysmogram, percent saturation oxygen, blood pressure and heart rate. The six vital-sign parameters were encoded in a web server site and sent to a client site upon logging on. The encoded parameters were then decoded into six vital sign signals. Our proposed multi-parameter vital-sign telemedicine system using Web Socket has successfully remotely monitored the six-parameter vital signs on 4G mobile network with a latency of less than 5 milliseconds.


2015 ◽  
Vol 105 (04) ◽  
pp. 204-208
Author(s):  
D. Kreimeier ◽  
E. Müller ◽  
F. Morlock ◽  
D. Jentsch ◽  
H. Unger ◽  
...  

Kurzfristige sowie ungeplante Änderungen – wie Auftragsschwankungen, Maschinenausfälle oder Krankheitstage der Mitarbeiter – beeinflussen die Produktionsplanung und -steuerung (PPS) von Industriefirmen. Trends wie Globalisierung und erhöhter Marktdruck verstärken diese Probleme. Zur Komplexitätsbewältigung bei der Entscheidungsfindung zur Fertigungssteuerung kommen in der Produktion Werkzeuge der „Digitalen Fabrik“, beispielsweise Simulationsprogramme, oder IT (Informationstechnologie)-Lösungen, wie Manufacturing Execution Systems (MES), zum Einsatz. Eine Verknüpfung dieser Bereiche würde einen echtzeitfähigen Datenaustausch erlauben, der wiederum eine echtzeitfähige Entscheidungsunterstützung bietet. Der Fachbeitrag stellt hierfür einen Lösungsansatz vor. &nbsp; Sudden and unsystematic changes, such as fluctuations in order flow, machine failures, or employee sick days affect the Production Planning and Control (PPC) activities of industrial companies. Trends like globalization and increased market pressure intensify these problems. To master the complexity of decision-making in production control, tools of the digital factory (e.g. simulation systems) or IT systems (e.g. Manufacturing Execution Systems (MES)) are applied in manufacturing. Combining these areas would enable real-time capable data exchange which, in turn, provides real-time capable decision support. This article presents an approach for solving this problem.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3084 ◽  
Author(s):  
Kyoungsoo Bok ◽  
Daeyun Kim ◽  
Jaesoo Yoo

As a large amount of stream data are generated through sensors over the Internet of Things environment, studies on complex event processing have been conducted to detect information required by users or specific applications in real time. A complex event is made by combining primitive events through a number of operators. However, the existing complex event-processing methods take a long time because they do not consider similarity and redundancy of operators. In this paper, we propose a new complex event-processing method considering similar and redundant operations for stream data from sensors in real time. In the proposed method, a similar operation in common events is converted into a virtual operator, and redundant operations on the same events are converted into a single operator. The event query tree for complex event detection is reconstructed using the converted operators. Through this method, the cost of comparison and inspection of similar and redundant operations is reduced, thereby decreasing the overall processing cost. To prove the superior performance of the proposed method, its performance is evaluated in comparison with existing methods.


Sign in / Sign up

Export Citation Format

Share Document