LIFE CYCLE ASSESSMENTS OF WHITE FLAT AND RED OR WHITE PITCHED ROOFS FOR RESIDENTIAL BUILDINGS IN ISRAEL

2017 ◽  
Vol 12 (2) ◽  
pp. 95-111 ◽  
Author(s):  
Svetlana Pushkar ◽  
Oleg Verbitsky

Historically, white flat roofs have been used in Israel due to the intense solar radiation and long, hot, rainless summers. However, red pitched roofs have also been frequently used for aesthetic reasons. It has been recently observed that red pitched roofs have been recolored white by homeowners. The goal of this study was to compare the life cycle assessments (LCAs) of white flat roofs versus red or white pitched roofs through their production (P), operational energy (OE), and maintenance to disposal (MtoD) stages. EnergyPlus software was used to evaluate the OE stage. The ReCiPe method was used to evaluate the environmental damages in all the stages. A two-stage nested ANOVA was used to determine the significant differences between the ReCiPe result of a white flat roof and the ReCiPe result of a red/white pitched roof. It was found that (i) selection of the best roof technology (flat or pitched) requires consideration of the LCA, including the P, OE, and MtoD stages; (ii) the white (flat and pitched) roof was the best technology, while the red pitched roof was the worst technology; and (iii) the combination of the ReCiPe endpoint hierarchical six methodological options method with two-stage nested hierarchical mixed ANOVA is the best approach for assessing the differences related to the LCAs of roof technologies.

Author(s):  
H. Harter ◽  
B. Willenborg ◽  
W. Lang ◽  
T. H. Kolbe

Abstract. Reducing the demand for non-renewable resources and the resulting environmental impact is an objective of sustainable development, to which buildings contribute significantly. In order to realize the goal of reaching a climate-neutral building stock, it must first be analyzed and evaluated in order to develop optimization strategies. The life cycle based consideration and assessment of buildings plays a key role in this process. Approaches and tools already exist for this purpose, but they mainly take the operational energy demand of buildings and not a life cycle based approach into account, especially when assessing technical building services (TBS). Therefore, this paper presents and applies a methodical approach for the life cycle based assessment of the TBS of large residential building stocks, based on semantic 3D city models (CityGML). The methodical approach developed for this purpose describes the procedure for calculating the operational energy demand (already validated) and the heating load of the building, the dimensioning of the TBS components and the calculation of the life cycle assessment. The application of the methodology is illustrated in a case study with over 115,000 residential buildings from Munich, Germany. The study shows that the methodology calculates reliable results and that a significant reduction of the life cycle based energy demand can be achieved by refurbishment measures/scenarios. Nevertheless, the goal of achieving a climate-neutral building stock is a challenge from a life cycle perspective.


Author(s):  
Raymond R. Tan ◽  
◽  
Alvin B. Culaba ◽  
Michael R. I. Purvis ◽  
◽  
...  

Data noise often does not allow definitive results to be drawn from life cycle assessments (LCAs). The use of possibility theory to model data uncertainty led to the development of an LCA model that is able to derive useful conclusions to a specified level of confidence. The specific decision domain in this study involves the identification and selection of the best environmental option from ten different automotive fuels.


2013 ◽  
Vol 689 ◽  
pp. 54-59 ◽  
Author(s):  
Usep Surahman ◽  
Tetsu Kubota

This study aims to develop a simplified life cycle assessment model for residential buildings in Indonesia, which can be used under relatively poor data availability conditions. In order to obtain material inventory data and household energy consumption profiles for constructing the above model, a survey was conducted in Bandung in 2011. This paper analyzes life cycle energy and CO2 emissions employing an input-output analysis-based method within unplanned houses (n=250), which are classified into three categories, namely simple, medium and luxurious houses. The results showed that the average embodied energy of simple, medium and luxurious houses was 36.3, 130.0 and 367.7 GJ respectively. The cement consumed the largest energy and emitted the most CO2 emissions among all materials. The annual average operational energy of simple, medium and luxurious houses varied widely at 11.6, 17.4 and 32.1 GJ/year respectively. The energy consumption for cooking accounted for the largest percentage of operational energy. The profiles of life cycle CO2 emissions were similar with those of life cycle energy. The factors affecting embodied, operational and life cycle energy were also studied.


2018 ◽  
Vol 8 (8) ◽  
pp. 1384 ◽  
Author(s):  
Benedetta Marmiroli ◽  
Maarten Messagie ◽  
Giovanni Dotelli ◽  
Joeri Van Mierlo

: Life Cycle assessments (LCAs) on electric mobility are providing a plethora of diverging results. 44 articles, published from 2008 to 2018 have been investigated in this review, in order to find the extent and the reason behind this deviation. The first hurdle can be found in the goal definition, followed by the modelling choice, as both are generally incomplete and inconsistent. These gaps influence the choices made in the Life Cycle Inventory (LCI) stage, particularly in regards to the selection of the electricity mix. A statistical regression is made with results available in the literature. It emerges that, despite the wide-ranging scopes and the numerous variables present in the assessments, the electricity mix’s carbon intensity can explain 70% of the variability of the results. This encourages a shared framework to drive practitioners in the execution of the assessment and policy makers in the interpretation of the results.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 255
Author(s):  
Muataz Dhaif ◽  
André Stephan

In hot and humid climatic conditions, cooling tends to dominate building thermal energy use. Cooling loads can be reduced through the adoption of efficient building envelope materials, such as Structural Insulated Panels (SIPs). This study quantifies the life cycle cost and operational energy of a representative case-study house in Bahrain using SIPs and hollow concrete blocks (HCBs) for the envelope over a period of 50 years. Operational energy is calculated using a dynamic energy simulation tool, operational costs are calculated based on the energy demand and local tariff rates, and construction costs are estimated using market prices and quotations. The life cycle cost is quantified using the Net Present Cost technique. Results show that SIPs yield a 20.6% reduction in cooling energy use compared to HCBs. For SIP costs of 12 and 17 USD/m², the SIP house was cheaper throughout, or had a higher capital cost than the HCB house (breaking even in year 33), respectively. We propose policy recommendations with respect to material pricing, electricity tariffs, and energy efficiency, to improve the operational energy efficiency of houses in Bahrain and similar countries along the Arabian Peninsula.


2013 ◽  
Vol 361-363 ◽  
pp. 436-439
Author(s):  
Hua Feng Liu

Flat roof wildly exists in early built residential buildings in most of China cities. Flat roofs have many shortcomings such as sample function, large energy consumption and lacking features. Through researching of existing housing roofing, analysis the measures and advantages of transformation of flat roof to pitched, expounding the technology prospects of transformation of flat roof to pitched.


2018 ◽  
Vol 11 (6) ◽  
pp. 1354-1380
Author(s):  
M. G. SILVA ◽  
V. GOMES ◽  
M. R. M. SAADE

Abstract Over the past decades, extensive research has been carried out to reduce the environmental impacts associated with the cement and concrete production. Life-cycle assessment (LCA) enables the quantification of the environmental loads and offers a useful perspective to scientifically support such studies. In this paper, we demonstrate LCA’s contribution to the selection of low environmental impact concretes, using breakwater coreloc components as a case study. A detailed experimental study was designed for the selection of an alkali activator for blast furnace slag (bfs) to produce concrete suitable for breakwater structures; for the evaluation of concrete properties and for the performance assessment of full scale elements in the field, as well as in the laboratory. Sodium silicate-activated bfs concrete mixtures achieved the best results in terms of performance requirements. Our cradle-to-gate life-cycle assessments showed that, though this chemical activator indeed produces lower global warming potential mixtures than the reference portland CP V-ARI concrete, it induces relevant impacts in several environmental categories. Such information is critical when selecting and optimizing low-impact concrete mixture design, and would not be detected in typical experimental studies that are exclusively guided by compliance with performance requirements.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4145
Author(s):  
Helena Monteiro ◽  
Fausto Freire ◽  
John E. Fernández

The building envelope is critical to reducing operational energy in residential buildings. Under moderate climates, as in South-Western Europe (Portugal), thermal operational energy may be substantially reduced with an adequate building envelope selection at the design stage; therefore, it is crucial to assess the trade-offs between operational and embodied impacts. In this work, the environmental influence of building envelope construction with varying thermal performance were assessed for a South-Western European house under two operational patterns using life-cycle assessment (LCA) methodology. Five insulation thickness levels (0–12 cm), four total ventilation levels (0.3–1.2 ac/h), three exterior wall alternatives (double brick, concrete, and wood walls), and six insulation materials were studied. Insulation thickness tipping-points were identified for alternative operational patterns and wall envelopes, considering six environmental impact categories. Life-cycle results show that, under a South-Western European climate, the embodied impacts represent twice the operational impact of a new Portuguese house. Insulation played an important role. However, increasing it beyond the tipping-point is counterproductive. Lowering ventilation levels and adopting wood walls reduced the house life-cycle impacts. Cork was the insulation material with the lowest impact. Thus, under a moderate climate, priority should be given to using LCA to select envelope solutions.


Sign in / Sign up

Export Citation Format

Share Document