EQUITABLE ADAPTATION PLANNING IN HISTORIC COASTAL CITIES: OBSERVATIONS FROM AN ARCHITECTURAL PRACTICE

2019 ◽  
Vol 14 (1) ◽  
pp. 199-216
Author(s):  
Stephanie Reed Zurek

INTRODUCTION In communities all along the seaboard, we have large and challenging conversations ahead of us. Historic coastal cities must reconcile tensions between preserving a community's existing cultural heritage and the reality of planning for several feet of sea level rise in the coming decades. As more frequent tidal flooding and more extensive storm surges begin to affect the lowest-lying neighborhoods, cities and states are faced with decisions about where and when to invest in adaptation measures and at what scale. Adaptation measures will undoubtedly change the landscape of the existing built environment, which contributes to each community's cultural heritage and its collective psyche. How can a community move forward with the joint goals of preservation and protection? The decisions are daunting and imagining a built environment that accommodates a rising sea can be a surreal exercise. Questions will be raised such as, what funds are available for large-scale infrastructure projects? Or, why is investment continuing in this neighborhood if it will be under water in fifty years? Architects may feel unequipped to enter these conversations. The easiest, and likely last, series of decisions in this process may be about how to elevate a building. However, before arriving at such a decision, an interconnected web of related conversations must occur. Despite one's reluctance to participate in such a daunting task, a designer's skill set is useful in the process. The assistance that is required of architects at the front end of preparing historic coastal communities for sea level rise includes gathering and presenting existing conditions data, facilitating robust and inclusive conversations, educating decision-makers, and illustrating options, all of which empower communities to work together toward an appropriate and equitable solution. Architects have an opportunity to not only facilitate and participate in adaptation planning conversations, but also to advocate for and influence the structure of decision-making processes to be more inclusive and participatory. The following discussion highlights specific challenges in historic coastal cities, using several examples from our work in Rhode Island, as well as observations of state and municipal planning processes. As architects and urban designers, it is Union Studio's mission to enrich the lives of people and communities through the design of buildings and places for this generation and the next. We dedicate ourselves to projects ranging from large-scale neighborhood masterplans and public libraries to smaller-scale urban infill development and residential design. The change in scale from one project to the next compels us to consider the implications of small-scale design details on the overall character of a place and, conversely, the implications of broad regulatory policies on the design of a single building or home.

2016 ◽  
Vol 60 (2) ◽  
pp. 249-265 ◽  
Author(s):  
Xinyu Fu ◽  
Mohammed Gomaa ◽  
Yujun Deng ◽  
Zhong-Ren Peng

2017 ◽  
Vol 17 (9) ◽  
pp. 1559-1571 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gael Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave–current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge – up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


2018 ◽  
Author(s):  
Pedro J. Pinto ◽  
G. Mathias Kondolf ◽  
Pun Lok Raymond Wong

San Francisco Bay, the largest estuary on the Pacific Coast of North America, is heavily encroached by a metropolitan region with over 7 million inhabitants. Urban development and infrastructure, much of which built over landfill and at the cost of former baylands, were placed at very low elevations. Sea-level rise (SLR) poses a formidable challenge to these highly exposed urban areas and already stressed natural systems. “Green”, or ecosystem-based, adaptation is already on the way around the Bay. Large scale wetland restoration projects have already been concluded, and further action now often requires articulation with the reinforcement of flood defense structures, given the level of urban encroachment. While levee setback, or removal, would provide greater environmental benefit, the need to protect urban areas and infrastructure has led to the trial of ingenious solutions for promoting wetland resilience while upgrading the level of protection granted by levees.We analyzed the Bay’s environmental governance and planning structure, through direct observation, interviews with stakeholders, and study of planning documents and projects. We present two cases where actual implementation of SLR adaptation has led, or may lead to, the need to revise standards & practices or to make uneasy choices between conflicting public interests.Among the region’s stakeholders, there is an increasing awareness of the risks related to SLR, but the institutional arrangements are complex, and communication between the different public agencies/departments is not always as streamlined as it could be. Some agencies and departments need to adapt their procedures in order to remove institutional barriers to adaptation, but path dependence is an obstacle. There is evidence that more frank and regular communication between public actors is needed. It also emphasizes the benefits of a coordination of efforts and strategies, something that was eroded in the transition from government-led policies to a new paradigm of local-based adaptive governance.


2017 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gaël Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges cause great threats to lives, properties, and ecosystems. Assessing current and future storm surge hazard with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique, under present climate or considering a potential sea-level rise. Results confirm that the wave setup plays a major role in Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge, up to 100 % in some cases. The non-linear interactions of sea level rise with bathymetry and topography are generally found to be relatively small in Martinique, but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles, and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Gill J. Ainee ◽  
A.M. Anwar ◽  
S. Omar K

Climate change has brought about many threats to the ecosystem by inducing natural hazards, particularly sea level rise. Coastal areas then are subjected to many adverse effects of sea level rise, hence posing a risk to the safety of the coastal population, resources and assets. As part of the mitigation and adaptation measures against these effects, the Coastal Vulnerability Index (CVI) was implemented by many coastal regions. The CVI is an index-based tool to map the risks related to coastal changes. In Malaysia, the practice of CVI is still in its initial stages. Whereby, the Department of Irrigation and Drainage (DID) Malaysia had earlier carried out two pilot projects on CVI. The first is located at Tanjung Piai and the second at the west coast of Pulau Langkawi. This paper reviews the definition and concept of CVI. An alternative implementation approach of CVI in Malaysia is also discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Faming Wang ◽  
Xiaoliang Lu ◽  
Christian J. Sanders ◽  
Jianwu Tang

AbstractCoastal wetlands are large reservoirs of soil carbon (C). However, the annual C accumulation rates contributing to the C storage in these systems have yet to be spatially estimated on a large scale. We synthesized C accumulation rate (CAR) in tidal wetlands of the conterminous United States (US), upscaled the CAR to national scale, and predicted trends based on climate change scenarios. Here, we show that the mean CAR is 161.8 ± 6 g Cm−2 yr−1, and the conterminous US tidal wetlands sequestrate 4.2–5.0 Tg C yr−1. Relative sea level rise (RSLR) largely regulates the CAR. The tidal wetland CAR is projected to increase in this century and continue their C sequestration capacity in all climate change scenarios, suggesting a strong resilience to sea level rise. These results serve as a baseline assessment of C accumulation in tidal wetlands of US, and indicate a significant C sink throughout this century.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1934
Author(s):  
Adrienne Fung ◽  
Roger Babcock

Collection systems in coastal cities are often below the groundwater table, leading to groundwater infiltration (GWI) through defects such as cracks and poor lateral connections. Climate-change-induced sea level rise (SLR) will raise groundwater levels, increasing the head and thus the inflow. A method has been developed to predict GWI when groundwater levels change using calibration with sewershed flow monitoring data. The calibration results in a parameter that characterizes the porosity of the collection system. A case study is presented for a coastal city with reliable flow monitoring data for eight days that resulted in a large range of effective defect sizes (minimum 0.0044 to maximum 0.338 radians), however, the range of predicted future GWI in currently submerged pipes varied by only 12% from the mean. The mean effective defect predicts 70 to 200% increases in GWI due to SLR of 0.3 to 0.9 m (1 to 3 ft), respectively, for currently submerged pipes. Predicted additional GWI for pipes that will become submerged due to SLR will increase GWI to values that approach or exceed the current average dry weather flow. This methodology can be used for planning of infrastructure improvements to enhance resiliency in coastal communities.


2012 ◽  
Vol 1 (2) ◽  
pp. 225-263 ◽  
Author(s):  
Tony George Puthucherril

Climate change and sea level rise are realities that are upon us and which will profoundly impact the lives and basic rights of millions of coastal residents all over the world. As the law stands both at the international and at certain national levels, the basic human rights of the climate displaced are not adequately protected. This paper identifies two possible displacement scenarios, based on the continued availability/non-availability of land in the face of sea level rise and other climate change impacts; namely, the sinking Small Island Developing States phenomeon, where land disappears and there is no surplus land to support habitation, and all other cases, where the coastal land is battered severely but it can be re-utilized through appropriate adaptation measures or even if coastal frontage land disappears there is still land available inland. On this basis, the paper proposes three possible solutions: (1) bilateral or regional treaties to facilitate resettlement of the inhabitants of sinking Small Island Developing States, (2) appropriate coastal climate change adaptation implemented via integrated coastal zone management and (3) creation of new arrangements under the international climate change regime to provide financial assistance and technological support to respond to both situations. Even though the primary focus of this paper is on coastal communities in South Asia, the lessons that it offers are relevant to other coastal contexts as well.


2020 ◽  
Author(s):  
Bente Vollstedt ◽  
Jana Koerth ◽  
Athanasios Vafeidis

<p>The actual use of climate services depends on the identification of real user needs and their integration into the service. Thus, for the production of climate services user involvement is a vital component. Descriptions of practical approaches in the scientific literature are rare but necessary in order to gain better user insights and to improve the user-provider interface. In the frame of the ERA4CS project EVOKED, we apply the user-centered Living Lab approach to develop climate services with the objective to support the coastal adaptation process in Flensburg, a city vulnerable to coastal flooding due to sea-level rise. The aim is to transform climate information into valuable and useable climate services for users. In the beginning of the project we identified the climate service user needs of the community. Thereafter, we co-produced a web-based story map in collaboration with the users, as an information tool for the general public. The story map includes information on sea-level rise and its potential impacts and displays information on relevant adaptations options. For the production process of the story map we started with a compilation phase by drafting a first version of the story map from the providers’ perspective, followed by a demonstration and online feedback phase with user involvement. Based on the received feedback, we adjusted the story map to meet user needs. Results showed the need for clearer visualization of e.g. exposed locations in the city and more detailed information on adaptation measures. Preliminary findings indicate that the active provider-user interaction for the climate service may lead to long-term adaptation action.</p>


Sign in / Sign up

Export Citation Format

Share Document