scholarly journals Intelligent Services for Building Information Modeling - Assessing Variable Input Weather Data for Building Simulations

2013 ◽  
Vol 7 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Constantinos A. Balaras ◽  
Simon Kontoyiannidis ◽  
Elena G. Dascalaki ◽  
Kaliopi G. Droutsa

Building Information Modeling (BIM) for optimizing the total lifecycle cost of buildings is a challenge even today. Inadequate software interoperability, high costs as a result of the fragmented nature of the building industry, lack of standardization, inconsistent technology adoption among stakeholders are just some of the obstacles that architects and engineers face. However, optimization requires a structured procedure that enables continuous changes in design variables and assessment on energy consumption. A holistic building design and construction are already introduced in Europe through the energy performance of buildings directive (EPBD). The requirements have been strengthened by the EPBD recast for achieving cost optimal building designs for the life cycle of the building, moving towards nearly zero energy buildings by the end of the decade. BIM and intelligent services could play a crucial role in these efforts with improved visualization and productivity due to easy retrieval of information, increased coordination of data and exchange of information, all leading to a reduced cost for the design of energy efficient buildings. An ongoing European research project aims to contribute to these needs by developing a Virtual Energy Laboratory that will support building energy performance simulations taking into account the stochastic nature of input parameters and processes. This will be supported by information communication technology features utilizing the necessary computational power through cloud computing. This paper presents an overview of the ongoing efforts and focuses on results for assessing the impact of different input weather and climate data that are pertinent in building load and energy performance calculations.

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1515 ◽  
Author(s):  
Mohammad K. Najjar ◽  
Vivian W. Y. Tam ◽  
Leandro Torres Di Gregorio ◽  
Ana Catarina Jorge Evangelista ◽  
Ahmed W. A. Hammad ◽  
...  

Buildings demand a significant amount of energy during their life cycles, hence, effective design measures need to be adopted to ensure efficient energy usage and management in buildings. This study proposes a framework based on various performance parameters to enable decision-makers utilizing standard procedures and software to empower the process of sustainable energy use and management in buildings, through a parametric analysis in different climatic conditions. Experimental design is adopted within the framework via the use of various performance parameters related to the building design (i.e., construction materials for exterior walls and roofs, as well as a set of window-to-wall ratios). Results indicate that climate data plays a fundamental role in the choice of design factors that are best suited for effective energy consumption in buildings. In particular, sub-type climate classifications, as opposed to the primary climate group, have a minor influence. Around 15% improvement in the energy consumption in buildings is noticed due to changes to the design factor such as the window-to-wall ratio. Insights that can be gleaned from this study include the impact of space area, exterior openings and material thickness and choice for the envelope of the building in all climate classifications, aiding in the design of low-energy buildings.


2021 ◽  
Vol 12 (2) ◽  
pp. 47-57
Author(s):  
Mizanoor Rahman ◽  
Sohana Alam Mim ◽  
Shamanta Azad Oshin

Green building design and construction is a global demand to save this earth. Leadership in Energy and Environmental Design (LEED) is the world's most widely implemented sustainable building rating system. Building Information Modeling (BIM) technology assist to keep multi-disciplinary information into a single model, and it provides an ability to perform this research. The aim is to assess the pre-certification of a proposed residential building project in integration with BIM and LEED and find out the impact of cost for a green building project. A Prototype 3D model was developed by BIM technology for the LEED certification process. A total of 704 simulations was conducted by using Green Building Studio (GBS) tools. All simulation results were calculated based on nine categories of the LEED rating system. The results of this study indicate that the lifecycle cost can be reduced significantly for a high-performance green building despite of having a high initial investment cost. Journal of Engineering Science 12(2), 2021, 47-57


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4100
Author(s):  
Mariana Huskinson ◽  
Antonio Galiano-Garrigós ◽  
Ángel Benigno González-Avilés ◽  
M. Isabel Pérez-Millán

Improving the energy performance of existing buildings is one of the main strategies defined by the European Union to reduce global energy costs. Amongst the actions to be carried out in buildings to achieve this objective is working with passive measures adapted to each type of climate. To assist designers in the process of finding appropriate solutions for each building and location, different tools have been developed and since the implementation of building information modeling (BIM), it has been possible to perform an analysis of a building’s life cycle from an energy perspective and other types of analysis such as a comfort analysis. In the case of Spain, the first BIM environment tool has been implemented that deals with the global analysis of a building’s behavior and serves as an alternative to previous methods characterized by their lack of both flexibility and information offered to designers. This paper evaluates and compares the official Spanish energy performance evaluation tool (Cypetherm) released in 2018 using a case study involving the installation of sunlight control devices as part of a building refurbishment. It is intended to determine how databases and simplifications affect the designer’s decision-making. Additionally, the yielded energy results are complemented by a comfort analysis to explore the impact of these improvements from a users’ wellbeing viewpoint. At the end of the process the yielded results still confirm that the simulation remains far from reality and that simulation tools can indeed influence the decision-making process.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Ang Yang ◽  
Mingzhe Han ◽  
Qingcheng Zeng ◽  
Yuhui Sun

The construction industry is undergoing a digital revolution due to the emergence of new technologies. A significant trend is that construction projects have been transformed and upgraded to the digital and smart mode in the whole life cycle. As a critical technology for the construction industry’s innovative development, building information modeling (BIM) is widely adopted in building design, construction, and operation. BIM has gained much interest in the research field of smart buildings in recent years. However, the dimensions of BIM and smart building applications have not been explored thoroughly so far. With an in-depth review of related journal articles published from 1996 to July 2020 on the BIM applications for smart buildings, this paper provides a comprehensive understanding and critical thinking about the nexus of BIM and smart buildings. This paper proposes a framework with three dimensions for the nexus of BIM application in smart buildings, including BIM attributes, project phases, and smart attributes. According to the three dimensions, this paper elaborates on (1) the advantages of BIM for achieving various smartness; (2) applications of BIM in multiple phases of smart buildings; and (3) smart building functions that be achieved with BIM. Based on the analysis of the literature in three dimensions, this paper presents the cross-analysis of the nexus of BIM and smart buildings. Lastly, this paper proposes the critical insights and implications about the research gaps and research trends: (1) enhancing the interoperability of BIM software; (2) further exploring the role of BIM in the operation and refurbishment phase of smart buildings; (3) paying attention to BIM technology in the field of transportation infrastructure; (4) clarifying the economic benefits of BIM projects; and (5) integrating BIM and other technologies.


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


Author(s):  
Daniel Forgues ◽  
Sheryl Staub-French ◽  
Leila M. Farah

Drastic changes are occurring in the construction industry. Building Information Modeling (BIM) processes and technologies, and new Integrated Project Delivery (IPD) approaches are transforming the way buildings are planned, designed, built and operated. With the needs for new skills to cope with these accelerating changes, architecture, engineering and construction (AEC) associations in the United States are working with universities to reengineer teaching programs, integrating architecture training within an engineering and construction curriculum. Leading universities are already developing new programs, such as BIM studio courses, and promoting new ways to teach practice knowledge within design laboratories.These changes are also starting to occur in the Canadian industry. Some large governmental bodies are starting to request that their projects are designed and built using BIM. Canadian universities must respond to these changing requirements to prepare future architects, engineers, and construction managers for these new challenges and emerging industry needs. This paper provides examples for how to bridge this gap by bringing practice knowledge and research to the classroom. First, it synthesizes the impact of BIM and IPD on engineering practices in Canada. Second, it describes curriculum development undertaken between a school of architecture and two engineering departments for the development of multidisciplinary design studios to teach integrated design and BIM. Case studies are set in urban contexts and include the development of new buildings as well as refurbishment proposals for an industrial obsolete landmark. Finally, learning from this teaching and research experience, it raises questions and issues regarding our readiness to cope with this paradigm shift.


2020 ◽  
Vol 10 (17) ◽  
pp. 5888
Author(s):  
WoonSeong Jeong ◽  
Wei Yan ◽  
Chang Joon Lee

This study demonstrates the research and development of a visualization method called thermal performance simulation. The objective of this study is providing the results of thermal performance simulation results into building information modeling (BIM) models, displaying a series of thermal performance results, and enabling stakeholders to use the BIM tool as a common user interface in the early design stage. This method utilizes a combination of object-oriented physical modeling (OOPM) and BIM. To implement the suggested method, a specific BIM authoring tool called the application programming interface (API) was adopted, as well as an external database to maintain the thermal energy performance results from the OOPM tool. Based on this method, this study created a prototype called the thermal energy performance visualization (TEPV). The TEPV translates the information from the external database to the thermal energy performance indicator (TEPI) parameter in the BIM tool. In the TEPI, whenever BIM models are generated for building design, the thermal energy performance results are visualized by color-coding the building components in the BIM models. Visualization of thermal energy performance results enables non-engineers such as architects to explicitly inspect the simulation results. Moreover, the TEPV facilitates architects using BIM as an interface in building design to visualize building thermal energy performance, enhancing their design production at the early design stages.


Sign in / Sign up

Export Citation Format

Share Document