scholarly journals Comparison of Body Composition and Fatty Acid Profiles between Wild and Cultured Rio Grande Silvery Minnows

2017 ◽  
Vol 8 (2) ◽  
pp. 487-496 ◽  
Author(s):  
Madison S. Powell ◽  
Ronald W. Hardy ◽  
Alison M. Hutson ◽  
Louie A. Toya ◽  
Douglas Tave

Abstract Federally endangered Rio Grande Silvery Minnows (RGSM; Hybognathus amarus) were raised in one of three culture regimes: intensively, with only a hatchery diet; semi-intensively with access to natural food and hatchery diet supplementation; and with only natural food available at the Los Lunas Silvery Minnow Refugium (Los Lunas, New Mexico), a naturalized conservation refugium designed to mimic the natural environment of the RGSM in the Rio Grande. The project compared each culture regime and assessed differences and similarities in lipid and fatty acid content between feeding an artificial diet and consumption of natural food items in this species. After 117 d, whole-body lipid levels and fatty acid profiles were measured in each group and compared with values for wild RGSM. Fish fed the hatchery diet exclusively or as supplementary feed had significantly higher percent lipid (15.5% ± 0.5% and 10.6% ± 0.1%, respectively) than fish raised without access to the diet. Both groups had significantly higher percent lipid than fish raised in the refugium or wild fish (8.3% ± 0.1% and 7.8% ± 0.2%, respectively). Condition factor differed among groups and was highest in fish fed the hatchery diet (1.00) followed by fish supplemented with the hatchery diet (0.93), refugium fish (0.91), and wild fish (0.90). In this respect, refugium fish appeared more similar to wild fish than fish fed the hatchery diet or offered the diet as a supplement. Comparison of fatty acid profiles among groups showed marked differences among wild fish, refugium fish, and those fed the hatchery diet, either exclusively or as supplementary feed. Total omega-3 fatty acids, expressed as percentage of total fatty acids, were highest in wild fish but similar among other groups. Total omega-6 fatty acids showed an opposite trend, with five to nine times higher percentages of linoleic acid observed among fish from the three culture regimes compared with wild fish. Significant differences in lipid content and fatty acid composition between wild RGSM and cultured silvery minnows reflected their respective diets and culture regimes. Given similarities in fat content and condition factor with wild RGSM, we conclude that fish in the refugium do not require supplemental feeding with an artificial diet for this type of naturalized conservation management. Results from this study show that RGSM readily forage on natural food items present and also artificial feed when available, indicating dietary plasticity, which is advantageous for fish culture and future recovery.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hung Van Le ◽  
Don Viet Nguyen ◽  
Quang Vu Nguyen ◽  
Bunmi Sherifat Malau-Aduli ◽  
Peter David Nichols ◽  
...  

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 319-319
Author(s):  
Carrie James ◽  
Sandra L Rodriguez-Zas ◽  
Maria R C de Godoy

Abstract There is evidence that algae can be a sustainable alternative of omega-3 polyunsaturated fatty acids (w-3 PUFA; DHA and EPA) in the diets of felines, but more information is needed to determine bioavailability of algal w-3 PUFAs in felines. Therefore, the objective of this study was to determine the effects of dietary supplementation of algae DHA on plasma and red blood cell (RBC) membrane fatty acid profiles and fecal microbiota of adult cats. A complete randomized design was utilized with thirty female and male adult cats (mean age: 1.8 ± 0.03 yr, mean BW: 4.5 ± 0.8 kg) which were fed an assigned diet for 90 d. Three diets were formulated with poultry fat alone or inclusion of 2% fish oil or 2% algae DHA meal. Blood samples were collected after fasting on 0, 30, 60 and 90 d to be analyzed for plasma and red blood cell fatty acid profiles. A fresh fecal sample was collected within 15 min of defecation from each cat to be analyzed for fecal microbiota. Illumina 16S rRNA sequencing from V4 region was completed using MiSeq and analyzed using QIIME 2. Plasma and RBC fatty acid concentrations at baseline were similar among all cats and treatment groups. However, dietary treatment had a significant effect on the concentrations of several fatty acids in plasma and RBC over time. Plasma and RBC concentrations of DHA were greater (P < 0.05) for cats fed the algal DHA diet compared to the control and fish oil diets. Conversely, plasma and RBC concentrations of EPA did not differ among treatments when analyzed as a change from baseline. Beta- and alpha-diversity did not differ among treatments, indicating that 2% fish oil or algal-DHA meal does alter fecal microbiota of cats in contrast with cats fed a poultry fat-based diet.


2020 ◽  
Vol 15 (1) ◽  
pp. 606-618 ◽  
Author(s):  
Dani Dordevic ◽  
Ivan Kushkevych ◽  
Simona Jancikova ◽  
Sanja Cavar Zeljkovic ◽  
Michal Zdarsky ◽  
...  

AbstractThe aim of this study was to simulate olive oil use and to monitor changes in the profile of fatty acids in home-made preparations using olive oil, which involve repeated heat treatment cycles. The material used in the experiment consisted of extra virgin and refined olive oil samples. Fatty acid profiles of olive oil samples were monitored after each heating cycle (10 min). The outcomes showed that cycles of heat treatment cause significant (p < 0.05) differences in the fatty acid profile of olive oil. A similar trend of differences (p < 0.05) was found between fatty acid profiles in extra virgin and refined olive oils. As expected, the main differences occurred in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). Cross-correlation analysis also showed differences between the fatty acid profiles. The most prolific changes were observed between the control samples and the heated (at 180°C) samples of refined olive oil in PUFAs, though a heating temperature of 220°C resulted in similar decrease in MUFAs and PUFAs, in both extra virgin and refined olive oil samples. The study showed differences in fatty acid profiles that can occur during the culinary heating of olive oil. Furthermore, the study indicated that culinary heating of extra virgin olive oil produced results similar to those of the refined olive oil heating at a lower temperature below 180°C.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4080
Author(s):  
Milena Bučar Miklavčič ◽  
Fouad Taous ◽  
Vasilij Valenčič ◽  
Tibari Elghali ◽  
Maja Podgornik ◽  
...  

In this work, fatty-acid profiles, including trans fatty acids, in combination with chemometric tools, were applied as a determinant of purity (i.e., adulteration) and provenance (i.e., geographical origin) of cosmetic grade argan oil collected from different regions of Morocco in 2017. The fatty acid profiles obtained by gas chromatography (GC) showed that oleic acid (C18:1) is the most abundant fatty acid, followed by linoleic acid (C18:2) and palmitic acid (C16:0). The content of trans-oleic and trans-linoleic isomers was between 0.02% and 0.03%, while trans-linolenic isomers were between 0.06% and 0.09%. Discriminant analysis (DA) and orthogonal projection to latent structure—discriminant analysis (OPLS-DA) were performed to discriminate between argan oils from Essaouira, Taroudant, Tiznit, Chtouka-Aït Baha and Sidi Ifni. The correct classification rate was highest for argan oil from the Chtouka-Aït Baha province (90.0%) and the lowest for oils from the Sidi Ifni province (14.3%), with an overall correct classification rate of 51.6%. Pairwise comparison using OPLS-DA could predictably differentiate (≥0.92) between the geographical regions with the levels of stearic (C18:0) and arachidic (C20:0) fatty acids accounting for most of the variance. This study shows the feasibility of implementing authenticity criteria for argan oils by including limit values for trans-fatty acids and the ability to discern provenance using fatty acid profiling.


2020 ◽  
Vol 50 (1) ◽  
pp. 47-54
Author(s):  
I De Gasperín ◽  
J.G. Vicente ◽  
J.M. Pinos-Rodríguez ◽  
F Montiel ◽  
R Loeza ◽  
...  

The aim of this research was to determine fatty acid profiles in piglet brain, skin, and muscle, and in the milk of sows fed fat with different saturation grades during gestation and lactation. At 42 days of gestation, 50 multiparous sows were randomly allocated to one of two treatments, namely a diet containing pork lard (n = 25) and a diet containing soybean oil (n = 25). The fats were provided at 3.6% during gestation and at 4% during lactation. The experimental diets were offered through the weaning of the piglets. The fatty acid profile of the milk was determined fourteen days after parturition. At weaning (21 days postpartum) and seven days later, one of the piglets (n = 64) from 16 sows allocated to each treatment was selected at random to determine fatty acid profiles in brain, skin and muscle. Saturated and monounsaturated fatty acids were higher in the diet with pork lard than in that with soybean oil, in which the polyunsaturated fat content was higher. A higher saturation of fatty acids was found in milk from the sows that consumed pork lard, which contained more saturated fatty acids than the milk from sows that consumed soybean oil. The fatty acid profiles in muscle and skin of the piglets were affected by the diet of the sows. However, the fatty acid profile of the piglets’ brains was not affected by the diet of their mothers. Keywords: fat saturation, lard, piglet survival, sow feeding, soybean oil


2018 ◽  
Vol 17 (4) ◽  
pp. 334-347
Author(s):  
Kwanchayanawish MACHANA ◽  
Amonrat KANOKRUNG ◽  
Sirinart SRICHAN ◽  
Boonyadist VONGSAK ◽  
Maliwan KUTAKO ◽  
...  

Determinations of fatty acid profiles of five microalgae; Amphora sp., Chaetoceros sp., Melosira sp., Bellerochae sp., and Lithodesmium sp., from the east coast of Thailand were evaluated by conventional Gas Chromatography-Flame Ionization Detector (GC-FID). The results exhibited that the fatty acids suitable for biodiesel production were the most frequent entities encountered in all microalgae profiles. The GC chromatogram of fatty acid profiles in microalgae showed that both Amphora sp. and Chaetoceros sp. comprised essential omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Additionally, this study assessed whether Fourier Transform infrared (FT-IR) microspectroscopy could be used to evaluate and monitor the biochemical compositions of microalgae, including lipid, carbohydrate, and protein profiles, by using colorimetric methods. Results showed that FT-IR spectra combined with biochemical values of lipid, carbohydrate, and protein contents were used as predictive models generated by partial least square (PLS) regression. Cross-validation of the lipid, protein, and carbohydrate models showed high degrees of statistical accuracy with RMSECV values of approximately 0.5 - 3.22 %, and a coefficient of regression between the actual and predicted values of lipids, carbohydrates, and proteins were 92.66, 95.73, and 96.43 %, respectively. The RPD values were all high (> 3), indicating good predictive accuracy. This study suggested that FT-IR could be a tool for the simultaneous measurement of microalgae composition of biochemical contents in microalgae cells.


2021 ◽  
Author(s):  
Jerry Chien-Yao Chao

Fatty acid (FA) composition between biofilms and batch planktonic cultures were compared for two bacterial species Pseudomonas aeruginosa and Staphylococcus aureaus. Biofilm cultures exhibited decrease in saturated fatty acids (SAFA) that potentially conform to a more fluidic biophysical membrane property. The amount of FA in the biofilms' extracellular polymeric substance was not sufficient to consider it having a major contribution to the observed differences between biofilms and batch planktonic cultures. While biofilm grazing by the amphipod Hyalella azteca was evident, only certain bacteria-specific FA appeared to have the potential to be retained (odd-number SAFA and branched-chain FA). H. azteca with diet strictly consisted of bacteria biofilms did not demonstrate significant changes in their nutritional condition in terms of ω-3 and ω-6 polyunsaturated fatty acids (PUFA): combined with the results from fasting trials, H. azteca appears to have the capacity to retain ω-3 and ω-6 PUFAs up to 10 days.


1974 ◽  
Vol 20 (12) ◽  
pp. 1723-1728 ◽  
Author(s):  
D. B. Drucker

Cellular fatty-acid profiles were obtained for streptococci of Lancefield groups A, B, C, D, N and O, and Streptococcus salivarius. The major fatty acids above isomyristate had the retention characteristics of n-myristate, myristoleate, n-palmitate, palmitoleate, anteisostearate, n-stearate, and oleate (or cis-vaccenate). Profiles were quantitatively and qualitatively similar. Strains could be identified as members of a particular Lancefield group by computer analysis with the Bravais–Pearson coefficient of linear correlation being used as a measure of association of strain pairs, since strains of the different Lancefield groups examined had distinct fatty-acid profiles.


1990 ◽  
Vol 45 (3-4) ◽  
pp. 166-172 ◽  
Author(s):  
Petra Sperling ◽  
Ute Hammer ◽  
Wolfgang Friedt ◽  
Ernst Heinz

Abstract A selection of lipids from achenes, cotyledons after germination, roots and leaves of normal and high oleic varieties of sunflower were analyzed with regard to their fatty acid profiles. The lipids included triacylglycerol and phosphatidylcholine as ER-made components and mono-and digalactosyl diacylglycerol as plastid-localized glycolipids. A comparison of fatty acid pat­ terns showed that the block in oleate desaturation of the high oleic variety is confined to the ER of fat accumulating embryos, but that upon germination the oleate desaturation in the cotyledonary ER is rapidly derepressed. These data are supported by enzymatic experiments. In microsomes from maturing fruits of the high oleic variety oleoyl-phosphatidylcholine desaturase could not be detected, whereas o leoyl-CoA : lyso-phosphatidylcholine acyltransferase and components of the microsomal electron transport chains were not affected. A correlation in the expression of desaturation blocks in seed and root fatty acids as observed in mutants of other species was not observed which, therefore, cannot be generalized. Our data are discussed in terms of the existence of two ER-specific oleate desaturase activities.


Sign in / Sign up

Export Citation Format

Share Document