Non-destructive methodologies for the evaluation of moisture content in sawn timber structures: ground-penetrating radar and ultrasound techniques

2010 ◽  
Vol 8 (6) ◽  
pp. 475-482 ◽  
Author(s):  
I. Rodríguez-Abad ◽  
R. Martínez-Sala ◽  
F. García-García ◽  
R. Capuz-Lladró
2016 ◽  
Author(s):  
Hamza Reci ◽  
Tien Chinh Maï ◽  
Zoubir Mehdi Sbartaï ◽  
Lara Pajewski ◽  
Emanuela Kiri

Abstract. This paper presents the results of a series of laboratory measurements carried out to study how the Ground Penetrating Radar (GPR) signal is affected by moisture variation in wood material. The effects of the wood fiber direction, with respect to the polarisation of the electromagnetic field, are investigated. The relative permittivity of wood and the amplitude of the electric field received by the radar are measured for different humidity levels, by using the direct-wave method in Wide Angle Radar Reflection configuration, where one GPR antenna is moved while the other is kept in a fixed position. The received signal is recorded for different separations between transmitting and receiving antennas. Direct waves are compared to reflected waves: it is observed that they show a different behaviour when the moisture content varies, due to their different propagation paths.


2021 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Qingqing Cao ◽  
Imad L. Al-Qadi

Moisture presence in asphalt concrete (AC) pavement is a major cause of damage to the pavement. In recent decades, an increasing need exists for non-destructive detection and monitoring of the moisture content in AC pavement. This paper provides a simulated approach to quantify the effect of internal moisture content on AC pavement dielectric properties using ground-penetrating radar (GPR). A heterogeneous numerical model was developed to simulate AC pavement with internal moisture at various saturation levels. The numerical model was validated using GPR surveys on cold-in-place recycling treated pavements. An empirical formula was derived from the simulation to correlate the dielectric constant with the moisture content for non-dry AC pavement. The results validated the proposed model and, hence, demonstrated the ability of GPR to monitor moisture variation in AC pavements.


2016 ◽  
Vol 5 (2) ◽  
pp. 575-581 ◽  
Author(s):  
Hamza Reci ◽  
Tien Chinh Maï ◽  
Zoubir Mehdi Sbartaï ◽  
Lara Pajewski ◽  
Emanuela Kiri

Abstract. This paper presents the results of a series of laboratory measurements, carried out to study how the ground-penetrating radar (GPR) signal is affected by moisture variation in wood material. The effects of the wood fibre direction, with respect to the polarisation of the electromagnetic field, are investigated. The relative permittivity of wood and the amplitude of the electric field received by the radar are measured for different humidity levels using the direct-wave method in wide angle radar reflection configuration, in which one GPR antenna is moved while the other is kept in a fixed position. The received signal is recorded for different separations between the transmitting and receiving antennas. Dielectric constants estimated from direct waves are compared to those estimated from reflected waves: direct and reflected waves show different behaviour when the moisture content varies, due to their different propagation paths.


2014 ◽  
Vol 501-504 ◽  
pp. 847-851
Author(s):  
Che Way Chang ◽  
Chen Hua Lin ◽  
Shyi Lin Lee ◽  
Ping Huang Chen ◽  
Ching Cheng Jen ◽  
...  

Ground Penetrating Radar (GPR) is a high efficiency technology to detect the cylindrical medium in the concretes material. The electromagnetic wave is incidental to double-rebar, and measures the reflection signal behaviors from energy zone. The results from the reflection signal of electromagnetic wave of the reinforcement concretes allow evaluating the radius of double-bar (1.6cm, 1cm). A physical model can effectively measure the radius of double-bar by the result of electromagnetic wave reflex behavior analysis. The results indicate that, this techology is capable of estimating the reinforcing double-bar radius to within 6%.


2021 ◽  
Vol 13 (18) ◽  
pp. 3696
Author(s):  
Yuri Álvarez López ◽  
María García-Fernández

Ground Penetrating Radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in Non-Destructive Testing (NDT), since it is able to detect both metallic and nonmetallic targets [...]


2010 ◽  
Vol 21 ◽  
pp. 399-417
Author(s):  
Mardeni Bin Roslee ◽  
Raja Syamsul Azmir Raja Abdullah ◽  
Helmi Zulhaidi bin Mohd Shafr

2020 ◽  
Author(s):  
Livia Lantini ◽  
Fabio Tosti ◽  
Iraklis Giannakis ◽  
Kevin Jagadissen Munisami ◽  
Dale Mortimer ◽  
...  

<p>Street trees are widely recognised to be an essential asset for the urban environment, as they bring several environmental, social and economic benefits [1]. However, the conflicting coexistence of tree root systems with the built environment, and especially with road infrastructures, is often cause of extensive damage, such as the uplifting and cracking of sidewalks and curbs, which could seriously compromise the safety of pedestrians, cyclists and drivers.</p><p>In this context, Ground Penetrating Radar (GPR) has long been proven to be an effective non-destructive testing (NDT) method for the evaluation and monitoring of road pavements. The effectiveness of this tool lies not only in its ease of use and cost-effectiveness, but also in the proven reliability of the results provided. Besides, recent studies have explored the capability of GPR in detecting and mapping tree roots [2]. Algorithms for the reconstruction of the tree root systems have been developed, and the spatial variations of root mass density have been also investigated [3].</p><p>The aim of this study is, therefore, to investigate the GPR potential in mapping the architecture of root systems in street trees. In particular, this research aims to improve upon the existing methods for detection of roots, focusing on the identification of the road pavement layers. In this way, different advanced signal processing techniques can be applied at specific sections, in order to remove reflections from the pavement layers without affecting root detection. This allows, therefore, to reduce false alarms when investigating trees with root systems developing underneath road pavements.</p><p>In this regard, data from trees of different species have been acquired and processed, using different antenna systems and survey methodologies, in an effort to investigate the impact of these parameters on the GPR overall performance.</p><p> </p><p><strong>Acknowledgements</strong></p><p>The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organisations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook Trust, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation, and The Wyfold Charitable Trust. This paper is dedicated to the memory of our colleague and friend Jonathan West, one of the original supporters of this research project.</p><p> </p><p><strong>References</strong></p><p>[1] J. Mullaney, T. Lucke, S. J. Trueman, 2015. “A review of benefits and challenges in growing street trees in paved urban environments,” Landscape and Urban Planning, 134, 157-166.</p><p>[2] A. M. Alani, L. Lantini, 2019. “Recent advances in tree root mapping and assessment using non-destructive testing methods: a focus on ground penetrating radar,” Surveys in Geophysics, 1-42.</p><p>[3] L. Lantini, F. Tosti, Giannakis, I., Egyir, D., A. Benedetto, A. M. Alani, 2019. “A Novel Processing Framework for Tree Root Mapping and Density Estimation using Ground Penetrating Radar,” In 10th International Workshop on Advanced Ground Penetrating Radar, EAGE.</p>


2018 ◽  
Vol 23 (4) ◽  
pp. 489-496
Author(s):  
J. David Redman ◽  
A. Peter Annan ◽  
Nectaria Diamanti

Bulk electrical properties of media are important inherently for ground penetrating radar (GPR) applications and for providing a means to determine indirectly other physical properties such as moisture content. We have developed a reflector whose reflectivity can be controlled electronically. This variable reflector controlled by a GPR provides an effective method to measure bulk electrical properties of media. For sample measurements, the GPR is placed on one side of a sample and the variable reflector on the opposite side. GPR trace data are then acquired with the reflector in an on-state and in the off-state. By differencing these measurements, we improve the ability to detect the specific reflection event from the variable reflector. This process removes both the direct wave and clutter from the trace data, improving the quality of the refection event and our ability to accurately pick its arrival time and amplitude. We describe the variable reflector, a prototype instrument based on the reflector and numerical modeling performed to understand its response. We also show the results of testing applications to the measurement of wood chip moisture content and monitoring of the electrical properties of concrete during the curing process.


Sign in / Sign up

Export Citation Format

Share Document