Development of an Earthquake Shake Map Routine with Low Cost Accelerometers: Preliminary Results

Author(s):  
G. Tanırcan ◽  
H. Alçık ◽  
Y. Kaya
Author(s):  
Thais Pousada García ◽  
Jessica Garabal-Barbeira ◽  
Patricia Porto Trillo ◽  
Olalla Vilar Figueira ◽  
Cristina Novo Díaz ◽  
...  

Background: Assistive Technology (AT) refers to “assistive products and related systems and services developed for people to maintain or improve functioning and thereby to promote well-being”. Improving the process of design and creation of assistive products is an important step towards strengthening AT provision. Purpose: (1) to present a framework for designing and creating Low-Cost AT; (2) to display the preliminary results and evidence derived from applying the framework. Methodology: First, an evidence-based process was applied to develop and conceptualize the framework. Then, a pilot project to validate the framework was carried out. The sample was formed by 11 people with disabilities. The measure instruments were specific questionnaire, several forms of the Matching Person-Technology model, the Psychosocial Impact of Assistive Device Scale, and a tool to assess the usability and universal design of AT. Results: The framework integrates three phases: Identification (Design), Creation (Making the prototype), and Implementation (Outcome Measures), based on the principles of Design Thinking, and with a user-centered perspective. The preliminary results showed the coherence of the entire process and its applicability. The matching between person and device was high, representing the importance of involving the user in the design and selection of AT. Conclusions: The framework is a guide for professionals and users to apply a Low-Cost and Do-It-Yourself perspective to the provision of AT. It highlights the importance of monitoring the entire procedure and measuring the effects, by applying the outcome measures.


Author(s):  
Pooya Soltani ◽  
João Paulo Vilas-Boas

Exergames may provide low-cost solutions for playing, training and rehabilitation. Exergame user research, studies the interaction between an exergame and users, in order to provide feedback for game developers and safe and meaningful game play. Detailed evaluations and a coding system based on muscle activation levels are necessary to characterize. This is important when it comes to use exergames in purposes other than fun. The purpose of this chapter was to characterize the muscle activation during a swimming exergame and to compare the level of activation during different conditions. Healthy subjects played bouts of exergame using Xbox360 and Kinect. Muscle activation was monitored for desired muscles on dominant upper limb using wireless electromyography system. An investigation of muscular coordination was also conducted to provide activation sequences of studied muscles. Preliminary results showed that upper trapezius was the most active muscle in all techniques. Results can provide insights for practitioners to have a baseline on application of exergames in their routines.


2018 ◽  
Vol 9 ◽  
Author(s):  
Wahiba Amri-Tiliouine ◽  
Meriem Laouar ◽  
Aissa Abdelguerfi ◽  
Joanna Jankowicz-Cieslak ◽  
Ljupcho Jankuloski ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Ilária Cristina Sgardioli ◽  
Fabíola Paoli Monteiro ◽  
Paulo Fanti ◽  
Társis Paiva Vieira ◽  
Vera Lúcia Gil-da-Silva-Lopes

1992 ◽  
Vol 46 (3) ◽  
pp. 401-406 ◽  
Author(s):  
George R. Agnes ◽  
Gary Horlick

Preliminary results for the analytical use of electrospray mass spectrometry (ES-MS) for elemental analysis are presented. Spectra with the declustered plus-one ion (M+) as the dominant species have been measured for the alkali metals (Li, Na, K, Rb, and Cs) and for several transition metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Ag, and Cd) in both aqueous and methanol solvents. A number of background ions are also observed including MH+, MO+, MOH+, and MOH(H2O)+. For vanadyl sulfate and uranyl nitrate, ES conditions can be adjusted to produce VO+ and UO2+ as the dominant ions in the mass spectra, indicating that direct speciation of inorganic solution components is possible. On the basis of these preliminary results, it appears that electrospray may offer a low-cost and simple generic ion source for elemental mass spectrometry.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 471 ◽  
Author(s):  
Francesca Fumian ◽  
Daniele Di Giovanni ◽  
Luca Martellucci ◽  
Riccardo Rossi ◽  
Pasqualino Gaudio

With the aim to have risk mitigation for people and first responders, active remote sensing standoff detection is a fruitful technology, both in case of accidental (natural or incidental) or intentional dispersion in the environment of volatile chemical substances. Nowadays, several laser-based methodologies could be put in place to perform extensive areal monitoring. The present study regards the proposal for a new system architecture derived from the integration of a low-cost laser-based network of detectors for pollutants interfaced with a more sophisticated layout mounted on an unmanned aerial vehicle (UAV) able to identify the nature and the amount of a release. With this system set up, the drone will be activated by the alarm triggered by the laser-based network when anomalies are detected. The area will be explored by the drone with a more accurate set of sensors for identification to validate the detection of the network of Lidar systems and to sample the substance in the focus zone for subsequent analysis. In this work, methodologies and requirements for the standoff detection and the identification features chosen for this integrated system are described. The work aims at the definition of a new approach to the problem through the integration of different technologies and tools in the operative field experiments. Some preliminary results in support of the suitability of the integration hypothesis proposed are presented. This study gives rise to an integrated system to be furtherly tested in a real environment.


Sign in / Sign up

Export Citation Format

Share Document