Diagenetic and Tectonic Evolution of Pore Networks in Carbonate Normal Fault Zones and their Effects on Permeability

Author(s):  
T.J. Haines ◽  
E.A.H. Michie ◽  
J. Neilson ◽  
D. Healy ◽  
G.I. Alsop ◽  
...  
2016 ◽  
Vol 50 (1) ◽  
pp. 15 ◽  
Author(s):  
E. Delogkos ◽  
T Manzocchi ◽  
C. Childs ◽  
C. Sachanidis ◽  
T. Barmpas ◽  
...  

Six normal fault zones, with throws ranging from a few meters up to 50 m, were studied within an active, open pit, lignite mine in Ptolemais. Each fault was mapped 20 times over a period of five years because at intervals of ca. 3 months working faces are taken back between 20 and 50 m exposing fresh fault outcrops for mapping.Various resolutions of photographs and structural measurements were imported into a fully georeferenced 3D structural interpretation package, resulting in aseismic scale and outcrop resolution 3D fault volume with outcrop and panoramic photographs acting as the seismic sections in equivalent seismic surveys. Low resolution 3D models for the fault system structure at mine scale and higher-resolution 3D models for the fault zone structure were produced after geological interpretation and they can be used for qualitative and quantitative analysis.


1983 ◽  
Vol 20 (9) ◽  
pp. 1355-1373 ◽  
Author(s):  
Erich Dimroth ◽  
Lazlo Imreh ◽  
Normand Goulet ◽  
Michel Rocheleau

In this paper, we describe the relations between the paleogeographic and tectonic evolution of the southwestern part of the Archean Abitibi and Bellecombe belts. Volcanism in the Abitibi Belt created a very thick, anisotropic plate composed of competent volcanic rocks and broken by the Duparquet–Destor break. The depocenters of the upper division of diverse volcanic rocks subsided about 10 km relative to their surroundings, and some central volcanic complexes within this division were consolidated by synvolcanic plutons and their thermal metamorphic aureole. The Cadillac break, a normal fault, separated the Abitibi and Bellecombe belts. The latter consisted of comparatively incompetent sedimentary rocks on top of a basement composed of ultramafic–mafic flows.North–south compression of the volcanic terrain during the Kenoran Orogeny produced a set of flexure folds, F1, that curve around the consolidated cores of central volcanic complexes generally in an easterly direction. Synclinoria nucleated at the deeply subsident depocenters of the upper diverse division. Further north–south flattening and subvertical stretching produced the east-trending F2 folds, their axial-plane schistosity S2, and local superposed schistosities S3 and S4. Southward verging recumbent folds suggest that the Bellecombe Belt simultaneously was pulled northward below the Abitibi Belt. During the orogeny, the Duparquet–Destor and Cadillac breaks were transformed to thrust faults; the Duparquet–Destor break also shows minor (< 3 km) right-lateral strike slip. Diapiric rise of late- to post-kinematic plutons locally distorted earlier schistosities.


2011 ◽  
Vol 3 (1) ◽  
pp. 159-186
Author(s):  
A. Nasuti ◽  
C. Pascal ◽  
J. Ebbing ◽  
J. F. Tønnesen

Abstract. The Møre-Trøndelag Fault Complex (MTFC) has controlled the tectonic evolution of Mid-Norway and its shelf for the past 400 Myr through repeated reactivations during Paleozoic, Mesozoic and perhaps Cenozoic times, the very last phase of reactivation involving normal to oblique slip faulting. Despite its pronounced signature in the landscape, its deep structure has remained unresolved until now. We focused on two specific segments of the MTFC (i.e. the so-called "Tjellefonna" and "Bæverdalen" faults) and acquired multiple geophysical data sets (i.e. gravity, magnetic, resistivity and shallow refraction profiles). A 100–200 m wide zone of gouge and/or brecciated bedrock dipping steeply to the south is interpreted as being the "Tjellefonna Fault" stricto sensu. The fault appears to be flanked by two additional but minor damage zones. A secondary normal fault also steeply dipping to the south but involving indurated breccias was detected ~1 km farther north. The "Bæverdalen Fault" is interpreted as a ~700 m wide and highly deformed zone involving fault gouge, breccias and lenses of intact bedrock, as such it is probably the most important fault segment in the studied area and accommodated most of the strain during presumably late Jurassic normal faulting. Our geophysical data are indicative of a "Bæverdalen Fault" dipping steeply towards the south, in agreement with the average orientation of the local tectonic grain. Our findings suggest that the influence of Mesozoic normal faulting along the MTFC on landscape development is more complex than previously anticipated.


2004 ◽  
Vol 26 (12) ◽  
pp. 2233-2249 ◽  
Author(s):  
F. Mirabella ◽  
M.G. Ciaccio ◽  
M.R. Barchi ◽  
S. Merlini

1988 ◽  
Vol 25 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Trygve Höy ◽  
P. van der Heyden

The Reade Lake and Kiakho stocks are posttectonic mesozonal quartz monzonite porphyries that intrude dominantly Middle Proterozoic Purcell Supergroup rocks in southeastern British Columbia. K–Ar dates of hornblende from the Reade Lake stock range from 103 to 143 Ma. However, a U–Pb date of 94 Ma from zircon concentrates is interpreted to be the age of emplacement of the stock, suggesting the range and older K–Ar dates are due to excess 40Ar. A K–Ar date of 122 Ma for the hornblende from the Kiakho stock is believed to be a more reliable intrusive age.Both stocks cut across and apparently seal two faults that have played roles in the tectonic evolution of the Purcell anticlinorium and Rocky Mountain thrust belt. The Reade Lake stock cuts the St. Mary fault, an east-trending reverse thrust that crosses the Rocky Mountain trench and links with thrusts in the Rocky Mountains; the Kiakho stock cuts the Cranbrook fault, an older east-trending normal fault. Hence, the 94 Ma date on the Reade Lake stock constrains the latest movement on the St. Mary fault to early Late Cretaceous; and the 122 Ma date on the Kiakho stock appears to limit latest movement on the Cranbrook fault to Early Cretaceous. These faults and the intrusions are part of an allochthonous package, displaced eastward by underlying thrust faults during formation of the Purcell anticlinorium and more eastern thrusts in the Rocky Mountains.


Sign in / Sign up

Export Citation Format

Share Document