A Gas-Risking Workflow for Top-Hole Drilling Studies

Author(s):  
F. Buckley ◽  
L. Cottee
Keyword(s):  
Author(s):  
Qihong Wu ◽  
Yurong Ma ◽  
Jiansheng Jie ◽  
Bin Miao ◽  
Rongehuan Fang ◽  
...  

2019 ◽  
Vol 3 (2) ◽  
pp. 111-118
Author(s):  
Bahtiar Wilantara ◽  
Raharjo Raharjo

This study aims to develop an analog compression tester measuring instrument into a digital compression tester as a measurement tool that can provide effectiveness and efficiency to users.                     This research is a research and development or R&D. This research was conducted in several steps, namely: problem identification, information gathering, product design, product manufacture, expert validation, product revision, testing, final production. The development of analog compression tester was first validated by material experts, media experts, and 15 students, and 5 students for field trials. The subjects of this study were vocational students at Taman Karya Madya Teknik Kebumen. Data collection techniques used in this study using instruments in the form of a questionnaire. The data analysis technique of this research is descriptive qualitative and quantitative descriptive percentage.                 The results of the development of digital compression tester designs are: 1) the tools and materials used are electric drill, grinding, cutter, goggles, gloves, masks, ruler, acetaminine welding, screwdriver, scissors, digital dial pressure gauge, hose, spark plugs, clamps , and nepel, 2) the manufacturing process that starts from the cutting process, the hole drilling process, the welding process and the process of connecting between components, 3) the workings of digital compression tester design that is reading the pressure or compression of the machine displayed on the monitor digitally using dial pressure digital gauge, 4) the test results obtained from the validation results from: a) material experts at 89% or Eligible; b) media experts at 85% or reasonable; c) response of field trial students in terms of ease of use and reading of 90% or feasible. Thus, the conclusion that the digital compression tester measuring instrument declared feasible to use for measurement.


2019 ◽  
Vol 88 (6) ◽  
pp. 485-488
Author(s):  
Shinji KAWAI ◽  
Takuya NAGAI ◽  
Shigetaka OKANO

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4046
Author(s):  
Mateusz Bronis ◽  
Edward Miko ◽  
Lukasz Nowakowski

This article discusses the relationship between the kinematic system used in drilling and the quality of through-holes. The drilling was done on a CTX Alpha 500 universal turning center using a TiAlN-coated 6.0 mm drill bit with internal cooling, mounted in a driven tool holder. The holes were cut in cylindrical 42CrMo4 + QT steel samples measuring 30 mm in diameter and 30 mm in length. Three types of hole-drilling kinematic systems were considered. The first consisted of a fixed workpiece and a tool performing rotary (primary) and linear motions. In the second system, the workpiece rotated (primary motion) while the tool moved linearly. In the third system, the workpiece and the tool rotated in opposite directions; the tool also moved linearly. The analysis was carried out for four output parameters characterizing the hole quality (i.e., cylindricity, straightness, roundness, and diameter errors). The experiment was designed using the Taguchi approach (orthogonal array). ANOVA multi-factor statistical analysis was used to determine the influence of the input parameters (cutting speed, feed per revolution and type of kinematic system) on the geometrical and dimensional errors of the hole. From the analysis, it is evident that the kinematic system had a significant effect on the hole roundness error.


Sign in / Sign up

Export Citation Format

Share Document