The Impact of Spatial Sampling and Polarisation in GPR Survey for Utility Mapping

Author(s):  
F. Lombardi ◽  
M. Lualdi
Keyword(s):  
2020 ◽  
Author(s):  
Minh Ganther ◽  
Marie-Lara Bouffaud ◽  
Lucie Gebauer ◽  
François Buscot ◽  
Doris Vetterlein ◽  
...  

<p>The complex interactions between plant roots and soil microbes enable a range of beneficial functions such as nutrient acquisition, defense against pathogens and production of plant growth hormones. The role of soil type and plant genotype in shaping rhizosphere communities has been explored in the past, but often without spatial context. The spatial resolution of rhizosphere processes enables us to observe pattern formation in the rhizosphere and investigate how spatial soil organization is shaped through soil–plant–microbiome interactions.</p><p>We applied spatial sampling in a standardized soil column experiment with two maize genotypes (wildtype vs. <em>roothairless3</em>) and two different soil textures (loam vs. sand) in order to investigate how in particular functions of the maize roots relating to nutrient/water uptake, immunity/defense, stress and exudation are affected. RNA sequencing and differential gene expression analysis were used to dissect impact of soil texture, root genotype and sampling depth. Our results indicate that variance in gene expression is predominantly explained by soil texture as well as sampling depth, whereas genotype appears to play a less pronounced role at the analyzed depths. Gene Ontology enrichment analysis of differentially expressed genes between soil textures revealed several functional categories and pathways relating to phytohormone-mediated signaling, cell growth, secondary metabolism, and water homeostasis. Community analysis of rhizosphere derived ACC deaminase active (acdS gene including) plant beneficial bacteria, which suppress the phytohormone ethylene production, suggests that soil texture and column depth are the major factors that affect acdS community composition.</p><p>From the comprehensive gene expression analyses we aim to identify maize marker genes from the relevant core functional groups. These marker genes will be potentially useful for future experiments; such as field plot experiments for investigation of later-emerging plant properties.</p><p>This research was conducted within the research program “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions” of the German Science Foundation (TA 290/5-1).</p>


2016 ◽  
Author(s):  
N. A. J. Schutgens ◽  
E. Gryspeerdt ◽  
N. Weigum ◽  
S. Tsyro ◽  
D. Goto ◽  
...  

Abstract. The spatial resolution of global climate models with interactive aerosol and the observations used to evaluate them is very different. Current models use grid-spacings of ∼ 200 km, while satellite observations of aerosol use so-called pixels of ∼ 10 km. Ground site or air-borne observations concern even smaller spatial scales. We study the errors incurred due to different resolutions by aggregating high-resolution simulations (10 km grid-spacing) over either the large areas of global model grid-boxes ("perfect" model data) or small areas corresponding to the pixels of satellite measurements or the field-of-view of ground-sites ("perfect" observations). Our analysis suggests that instantaneous RMS differences between these perfect observations and perfect global models can easily amount to 30–160%, for a range of observables like AOT (Aerosol Optical Thickness), extinction, black carbon mass concentrations, PM2.5, number densities and CCN (Cloud Condensation Nuclei). These differences, due entirely to different spatial sampling of models and observations, are often larger than measurement errors in real observations. Temporal averaging over a month of data reduces these differences more strongly for some observables (e.g. a three-fold reduction i.c. AOT), than for others (e.g. a two-fold reduction for surface black carbon concentrations), but significant RMS differences remain (10-75%). Note that this study ignores the issue of temporal sampling of real observations, which is likely to affect our present monthly error estimates. We examine several other strategies (e.g. spatial aggregation of observations, interpolation of model data) for reducing these differences and show their effectiveness. Finally, we examine consequences for the use of flight campaign data in global model evaluation and show that significant biases may be introduced depending on the flight strategy used.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim M. Tierney ◽  
Stephanie Mellor ◽  
George C. O’Neill ◽  
Niall Holmes ◽  
Elena Boto ◽  
...  

AbstractSeveral new technologies have emerged promising new Magnetoencephalography (MEG) systems in which the sensors can be placed close to the scalp. One such technology, Optically Pumped MEG (OP-MEG) allows for a scalp mounted system that provides measurements within millimetres of the scalp surface. A question that arises in developing on-scalp systems is: how many sensors are necessary to achieve adequate performance/spatial discrimination? There are many factors to consider in answering this question such as the signal to noise ratio (SNR), the locations and depths of the sources, density of spatial sampling, sensor gain errors (due to interference, subject movement, cross-talk, etc.) and, of course, the desired spatial discrimination. In this paper, we provide simulations which show the impact these factors have on designing sensor arrays for wearable MEG. While OP-MEG has the potential to provide high information content at dense spatial samplings, we find that adequate spatial discrimination of sources (< 1 cm) can be achieved with relatively few sensors (< 100) at coarse spatial samplings (~ 30 mm) at high SNR. After this point approximately 50 more sensors are required for every 1 mm improvement in spatial discrimination. Comparable discrimination for traditional cryogenic systems require more channels by these same metrics. We also show that sensor gain errors have the greatest impact on discrimination between deep sources at high SNR. Finally, we also examine the limitation that aliasing due to undersampling has on the effective SNR of on-scalp sensors.


2014 ◽  
Vol 21 (3) ◽  
pp. 651-657 ◽  
Author(s):  
N. Molkenthin ◽  
K. Rehfeld ◽  
V. Stolbova ◽  
L. Tupikina ◽  
J. Kurths

Abstract. Climate networks are constructed from climate time series data using correlation measures. It is widely accepted that the geographical proximity, as well as other geographical features such as ocean and atmospheric currents, have a large impact on the observable time-series similarity. Therefore it is to be expected that the spatial sampling will influence the reconstructed network. Here we investigate this by comparing analytical flow networks, networks generated with the START model and networks from temperature data from the Asian monsoon domain. We evaluate them on a regular grid, a grid with added random jittering and two variations of clustered sampling. We find that the impact of the spatial sampling on most network measures only distorts the plots if the node distribution is significantly inhomogeneous. As a simple diagnostic measure for the detection of inhomogeneous sampling we suggest the Voronoi cell size distribution.


2016 ◽  
Vol 16 (10) ◽  
pp. 6335-6353 ◽  
Author(s):  
Nick A. J. Schutgens ◽  
Edward Gryspeerdt ◽  
Natalie Weigum ◽  
Svetlana Tsyro ◽  
Daisuke Goto ◽  
...  

Abstract. The spatial resolution of global climate models with interactive aerosol and the observations used to evaluate them is very different. Current models use grid spacings of  ∼ 200 km, while satellite observations of aerosol use so-called pixels of  ∼ 10 km. Ground site or airborne observations relate to even smaller spatial scales. We study the errors incurred due to different resolutions by aggregating high-resolution simulations (10 km grid spacing) over either the large areas of global model grid boxes ("perfect" model data) or small areas corresponding to the pixels of satellite measurements or the field of view of ground sites ("perfect" observations). Our analysis suggests that instantaneous root-mean-square (RMS) differences of perfect observations from perfect global models can easily amount to 30–160 %, for a range of observables like AOT (aerosol optical thickness), extinction, black carbon mass concentrations, PM2.5, number densities and CCN (cloud condensation nuclei). These differences, due entirely to different spatial sampling of models and observations, are often larger than measurement errors in real observations. Temporal averaging over a month of data reduces these differences more strongly for some observables (e.g. a threefold reduction for AOT), than for others (e.g. a twofold reduction for surface black carbon concentrations), but significant RMS differences remain (10–75 %). Note that this study ignores the issue of temporal sampling of real observations, which is likely to affect our present monthly error estimates. We examine several other strategies (e.g. spatial aggregation of observations, interpolation of model data) for reducing these differences and show their effectiveness. Finally, we examine consequences for the use of flight campaign data in global model evaluation and show that significant biases may be introduced depending on the flight strategy used.


2014 ◽  
Vol 7 (7) ◽  
pp. 2313-2335 ◽  
Author(s):  
P. R. Colarco ◽  
R. A. Kahn ◽  
L. A. Remer ◽  
R. C. Levy

Abstract. We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Along-track and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (~ 400–800 km) and single pixel width (~ 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal–regional mean AOT. These AOT spatial sampling artifacts comprise up to 60% of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10°) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5°) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal–regional spatial sampling artifact in AOT. Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-of-atmosphere aerosol radiative forcing of 2–3 W m−2. These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.


2012 ◽  
Vol 20 (04) ◽  
pp. 1250015
Author(s):  
HUANCAI LU ◽  
SEAN F. WU ◽  
D. B. (Don) KEELE

Traditionally, high-accuracy full-sphere polar measurements require dense sampling of the sound field at very-fine angular increments, particularly at high frequencies. The proposed HELS (Helmholtz equation least squares) method allows this restriction to be relaxed significantly. Using this method, far fewer sampling points are needed for full and accurate reconstruction of the radiated sound field. Depending on the required accuracy, sound fields can be reconstructed using only 10% to 20% of the number of sampling points required by conventional techniques. The HELS method allows accurate reconstruction even when the Nyquist spatial sampling rate is violated in certain directions. This paper examines the convergence of HELS solutions via theory and simulation for reconstruction of the acoustic radiation patterns generated by a rectangular plate mounted on an infinite rigid flat baffle. In particular, the impact of the number of expansion terms and that of measurement points as well as errors imbedded in the input data on the resultant accuracy of reconstruction is analyzed.


Sign in / Sign up

Export Citation Format

Share Document