Spatial sampling approach to unravel the impact of soil texture and root genotype on maize root gene expression profiles

Author(s):  
Minh Ganther ◽  
Marie-Lara Bouffaud ◽  
Lucie Gebauer ◽  
François Buscot ◽  
Doris Vetterlein ◽  
...  

<p>The complex interactions between plant roots and soil microbes enable a range of beneficial functions such as nutrient acquisition, defense against pathogens and production of plant growth hormones. The role of soil type and plant genotype in shaping rhizosphere communities has been explored in the past, but often without spatial context. The spatial resolution of rhizosphere processes enables us to observe pattern formation in the rhizosphere and investigate how spatial soil organization is shaped through soil–plant–microbiome interactions.</p><p>We applied spatial sampling in a standardized soil column experiment with two maize genotypes (wildtype vs. <em>roothairless3</em>) and two different soil textures (loam vs. sand) in order to investigate how in particular functions of the maize roots relating to nutrient/water uptake, immunity/defense, stress and exudation are affected. RNA sequencing and differential gene expression analysis were used to dissect impact of soil texture, root genotype and sampling depth. Our results indicate that variance in gene expression is predominantly explained by soil texture as well as sampling depth, whereas genotype appears to play a less pronounced role at the analyzed depths. Gene Ontology enrichment analysis of differentially expressed genes between soil textures revealed several functional categories and pathways relating to phytohormone-mediated signaling, cell growth, secondary metabolism, and water homeostasis. Community analysis of rhizosphere derived ACC deaminase active (acdS gene including) plant beneficial bacteria, which suppress the phytohormone ethylene production, suggests that soil texture and column depth are the major factors that affect acdS community composition.</p><p>From the comprehensive gene expression analyses we aim to identify maize marker genes from the relevant core functional groups. These marker genes will be potentially useful for future experiments; such as field plot experiments for investigation of later-emerging plant properties.</p><p>This research was conducted within the research program “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions” of the German Science Foundation (TA 290/5-1).</p>

2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


2020 ◽  
Vol 7 ◽  
Author(s):  
Hari Prasad Osuru ◽  
Umadevi Paila ◽  
Keita Ikeda ◽  
Zhiyi Zuo ◽  
Robert H. Thiele

Background: Hepatic dysfunction plays a major role in adverse outcomes in sepsis. Volatile anesthetic agents may protect against organ dysfunction in the setting of critical illness and infection. The goal of this study was to study the impact of Sepsis-inflammation on hepatic subcellular energetics in animals anesthetized with both Propofol (intravenous anesthetic agent and GABA agonist) and Isoflurane (volatile anesthetic i.e., VAA).Methods: Sprague-Dawley rats were anesthetized with Propofol or isoflurane. Rats in each group were randomized to celiotomy and closure (control) or cecal ligation and puncture “CLP” (Sepsis-inflammation) for 8 h.Results: Inflammation led to upregulation in hepatic hypoxia-inducible factor-1 in both groups. Rats anesthetized with isoflurane also exhibited increases in bcl-2, inducible nitric oxide synthase, and heme oxygenase-1(HO-1) during inflammation, whereas rats anesthetized with Propofol did not. In rats anesthetized with isoflurane, decreased mRNA, protein (Complex II, IV, V), and activity levels (Complex II/III,IV,V) were identified for all components of the electron transport chain, leading to a decrease in mitochondrial ATP. In contrast, in rats anesthetized with Propofol, these changes were not identified after exposure to inflammation. RNA-Seq and real-time quantitative PCR (qPCR) expression analysis identified a substantial difference between groups (isoflurane vs. Propofol) in mitogen-activated protein kinase (MAPK) related gene expression following exposure to Sepsis-inflammation.Conclusions: Compared to rats anesthetized with Propofol, those anesthetized with isoflurane exhibit more oxidative stress, decreased oxidative phosphorylation protein expression, and electron transport chain activity and increased expression of organ-protective proteins.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Zhi Chai ◽  
Yafei Lyu ◽  
Qiuyan Chen ◽  
Cheng-Hsin Wei ◽  
Lindsay Snyder ◽  
...  

Abstract Objectives To characterize and compare the impact of vitamin A (VA) deficiency on gene expression patterns in the small intestine (SI) and the colon, and to discover novel target genes in VA-related biological pathways. Methods vitamin A deficient (VAD) mice were generated by feeding VAD diet to pregnant C57/BL6 dams and their post-weaning offspring. Total mRNA extracted from SI and colon were sequenced using Illumina HiSeq 2500 platform. Differentially Expressed Gene (DEG), Gene Ontology (GO) enrichment, and Weighted Gene Co-expression Network Analysis (WGCNA) were performed to characterize expression patterns and co-expression patterns. Results The comparison between vitamin A sufficient (VAS) and VAD groups detected 49 and 94 DEGs in SI and colon, respectively. According to GO information, DEGs in the SI demonstrated significant enrichment in categories relevant to retinoid metabolic process, molecule binding, and immune function. Immunity related pathways, such as “humoral immune response” and “complement activation,” were positively associated with VA in SI. On the contrary, in colon, “cell division” was the only enriched category and was negatively associated with VA. WGCNA identified modules significantly correlated with VA status in SI and in colon. One of those modules contained five known retinoic acid targets. Therefore we have prioritized the other module members (e.g., Mbl2, Mmp9, Mmp13, Cxcl14 and Pkd1l2) to be investigated as candidate genes regulated by VA. Comparison of co-expression modules between SI and colon indicated distinct VA effects on these two organs. Conclusions The results show that VA deficiency alters the gene expression profiles in SI and colon quite differently. Some immune-related genes (Mbl2, Mmp9, Mmp13, Cxcl14 and Pkd1l2) may be novel targets under the control of VA in SI. Funding Sources NIH training grant and NIH research grant. Supporting Tables, Images and/or Graphs


2005 ◽  
Vol 23 (29) ◽  
pp. 7296-7306 ◽  
Author(s):  
Luca Agnelli ◽  
Silvio Bicciato ◽  
Michela Mattioli ◽  
Sonia Fabris ◽  
Daniela Intini ◽  
...  

Purpose The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM). A recently proposed classification grouped MM patients into five classes on the basis of their cyclin D expression profiles and the presence of the main translocations involving the immunoglobulin heavy chain locus (IGH) at 14q32. In this study, we provide a molecular characterization of the identified translocations/cyclins (TC) groups. Materials and Methods The gene expression profiles of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes and identify their transcriptional fingerprints. The cyclin D expression data were validated by means of real-time quantitative polymerase chain reaction analysis; fluorescence in situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. Results Class-prediction analysis identified 112 probe sets as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. The TC2 group, which showed extra copies of the CCND1 locus and no IGH translocations or the chromosome 13q deletion, was characterized by the overexpression of genes involved in protein biosynthesis at the translational level. A meta-analysis of published data sets validated the identified gene expression signatures. Conclusion Our data contribute to the understanding of the molecular and biologic features of distinct MM subtypes. The identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Laurent-Emmanuel Monfoulet ◽  
Caroline Buffiere ◽  
Geoffrey Istas ◽  
Claire Dufour ◽  
Carine le Bourvelec ◽  
...  

AbstractFood matrix is known to interact with some dietary constituents and microconstituents during digestion. These interactions may potentially affect the metabolism and bioavailability of some compounds, and as a consequence modulate their biological effects. In this context, the aim of this study was to determine the effect of apple food matrix on the bioavailability of flavan-3-ols and on the ability of these compounds to modulate the nutrigenomic response to a high fat challenge in minipigs.Adult male Yucatan minipigs (n = 5) were assigned to a random treatment sequence of high-fat meals non supplemented or supplemented with 250 g of raw apple, 250 g of apple puree or 1.4 g of apple polyphenols extract, with a 7-days washout period between each treatment. Each supplementation provided 155 mg flavan-3-ol monomers. At each treatment period, fasting- and 1h-, 2h-, 3h-postprandial blood samples were collected, and the concentration in flavan-3-ol monomers was measured on hydrolyzed serum, using UPLC-Q-TOF MS. The ability of apple-derived products to modulate the postprandial gene expression profile was assessed and compared in circulating PBMCs collected at 3 h after consumption of the four tested meals using a microarray analysis.Results show that the apple matrix did not affect the kinetic of the postprandial absorption of flavan-3-ol monomers. The total flavan-3-ols concentrations measured at peak were significantly higher in the extract (x1.75), suggesting an impact of the apple matrix on flavan-3-ols absorption. However, no significant difference in total flavanols was observed between raw apple and apple puree.Principal Component Analysis of the microarray data from PBMCs identified three distinct clusters of gene expression patterns: one corresponding to gene expression profiles after the high-fat meal, one for meal supplemented with raw apples or apple puree, and a third cluster for meal supplemented with polyphenol extract. A set of 309 genes was identified as differentially expressed by apple-derived products compared to high-fat meal alone, including 93 modulated with the three apple products. The variations in gene expression were similar for only 75% of the 93 genes, suggesting that the apple matrix affects the nutrigenomic response to flavan-3-ols. A bioinformatics analysis revealed that genes affected by apple-derived products are involved in inflammation and leukocyte transendothelial migration, suggesting a beneficial impact of apple-derived products.In conclusion, these results raise awareness for considering the impact of food matrix on the biological responsiveness of polyphenols in future nutritional studies.


2015 ◽  
Vol 41 (6) ◽  
pp. 640-645 ◽  
Author(s):  
Ghadeer Thalji ◽  
Lyndon F. Cooper ◽  
Salvador Nares

The objective of this study was to evaluate the impact of smoking on the early molecular events involved in peri-implant healing at either a micro-roughened or a micro-roughened with superimposed nanofeatures surface implant in humans. Twenty-one subjects, 10 smokers and 11 nonsmokers received 4 mini-implants (2.2 × 5.0 mm; 2 of each surface). After 3 and 7 days, paired mini-implants were retrieved by reverse threading and RNA isolated from implant adherent cells. Whole genome microarrays were used interrogate the gene expression profiles. The study failed to identify differences in the gene expression profiles of implant adherent cells at this early stage of osseointegration (up to day 7) comparing smoker and nonsmoker individuals.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1281-1281
Author(s):  
Wolfgang Wagner ◽  
Rainer Saffrich ◽  
Ute Wirkner ◽  
Volker Eckstein ◽  
Jonathon Blake ◽  
...  

Abstract Cell-cell contact between stem cells and cellular determinants of the microenvironment plays an essential role in the regulation of self-renewal and differentiation. The stromal cell line derived from murine fetal liver (AFT024) has been shown to support maintenance of primitive human hematopoietic progenitor cells (HPC) in vitro. We have studied the interaction between HPC (defined as CD34+/CD38− umbilical cord blood cells) and AFT024 and the impact of co-cultivation on the behavior and gene expression of HPC. By time lapse microscopy the mobility and behavior of CD34+/CD38− cells were monitored. Approximately 30% of the CD34+/CD38− cells adhered to the cellular niche through an uropod. CD44 and CD34 were co-localized at the site of contact. Gene expression profiles of CD34+/CD38− cells were then compared upon co-cultivation either with or without AFT024. After cultivation for 16h, 20h, 48h or 72h the HPC were separated form the feeder layer cells by a second FAC-Sort. Differential gene expression was analyzed using our Human Genome cDNA Microarray of over 51,145 ESTs. Among the genes with the highest up-regulation in contact with AFT024 were several genes involved in cell adhesion, proliferation and DNA-modification including tubulin genes, ezrin, complement component 1 q subcomponent 1 (C1QR1), proto-oncogene proteins c-fos and v-fos, proliferating cell nuclear antigen (PCNA), HLA-DR, gamma-glutamyl hydrolase (GGH), minichromosome maintenance deficient 6 (MCM6), uracil-DNA glycolase (UNG) and DNA-methyltransferase 1 (DNMT1). In contrast, genes that were down-regulated after contact with AFT024 included collagenase type iv (MMP2), elastin (ELN) and hemoglobin genes. Differential expression of six genes was confirmed by RT-PCR. Other authors have reported on the differential gene expression profiles of CD34+ cells derived from the bone marrow versus those from G-CSF mobilized blood. As CD34+ cells from the bone marrow might represent cells exposed to the natural HPC niche we have then compared our findings with these experiments. In these comparisons we identified several overlapping genes that are involved in regulation of cell cycle and DNA repair including PCNA, DNMT1, MCM6, MCM2, CDC28 protein kinase regulatory subunit 1B (CKS1B), Topoisomerase II (TOP2a), DNA Ligase 1 (LIG1) and DNA mismatch repair protein MLH1. All these genes were up-regulated among CD34+/CD38− cells upon co-culture with AFT024, as well as among CD34+ cells derived from the bone marrow versus those from peripheral blood. Our studies support the hypothesis that intimate contact and adhesive interaction of HPC with their niche profoundly influenced their proliferative potential and their differentiation program.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1891-1891
Author(s):  
Sigal Tavor ◽  
Jasmine Jacob-Hirsch ◽  
Manny Eisenbach ◽  
Sigi Kay ◽  
Shoshana Baron ◽  
...  

Abstract Elastase, along with other azurophil granule proteins like proteinase 3 regulates normal and leukemic granulopoiesis in an un-defined mechanism. We have recently showed that human acute myeloid leukemic (AML) cells constitutively express and secrete stromal derived factor 1 (SDF-1) dependent cell surface elastase, which regulates their migration and proliferation. To elucidate the molecular events and genes regulated by elastase and SDF-1/CXCR4 axis in AML cells, we examined gene expression of U937 AML cell line treated with neutralizing anti-CXCR4 Abs or elastase inhibitor (EI) compared to untreated cells, using DNA microarray technology. Unsupervised hierarchical clustering analysis showed very similar gene expression profiles of EI and anti CXCR4 Abs treated cells as compared to control. 230 of 8400 genes interrogated were repressed, and 164 were induced after culturing AML cells in the presence of EI or anti CXCR4 Abs at different time points as compared to untreated cells. Inhibition of elastase or CXCR4 was accompanied by down regulation of the transcripts of primary granule proteins. Functional classification of elastase or SDF-1/CXCR4 axis regulated genes revealed downregulation of HOXA9, HOXA10, ETS2, as well as other transcription factors that are over expressed in AML and are important for the development of leukemia. Whereas, transcriptional factors and regulators known to be induced during myeloid differentiation like C/EBPε, ID1, RUNX3 and HHEX were up-regulated in treated cells. Expression patterns of apoptosis genes indicated decline in death control by the p53 dependent pathway and a more prominent control by mitochondrial mediated apoptotic pathway like bcl2 related genes. In addition, receptors for interleukins, growth factors (G-CSFR and GM-CSF), complement component (C1QR1) were upregulated in the treated cells. In contrast, FLT-3, a growth factor receptor stimulating growth of early progenitor cells and AML blasts, was down regulated in AML cell treated with EI or anti CXCR4 Abs. These data were confirmed by real time PCR for selected marker genes of granulocytic differentiation. Interestingly, many of the differentially expressed genes were common to the transcriptional program of normal terminal granulocytic differentiation (Theilgaard-Monch & Borregarrd 2005. Blood 105:1785) suggesting that inhibition of elastase may induce differentiation in AML cells. Thus we further analyzed the effect of elastase inhibition on AML cell differentiation and growth. Treatment of HL60 AML cell line with EI triggered a proliferative arrest, apoptosis and mimicked terminal granulocytic differentiation, including morphologic changes, increased CD11b expression, and the ability to produce oxidative bursts. In summary, our study showed that inhibition of elastase or SDF-1/CXCR4 axis in AML cells affects similar pathways related to differentiation and malignant transformation, implying a critical role for those molecules in regulating leukemic development. Repression of elastase decreases proliferation and induces differentiation of AML cells, suggesting a potential new therapeutic approach for AML.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e22016-e22016
Author(s):  
F. L. Baehner ◽  
J. Anderson ◽  
C. Millward ◽  
C. Sangli ◽  
C. Quale ◽  
...  

e22016 Background: Tumor gene expression analysis using the Recurrence Score (RS) assay is frequently used in ER+ breast cancer. Manual microdissection is performed in cases where biopsy cavities (BxC) are present in the submitted specimen. The objective of this was to characterize by quantitative RT-PCR the impact of BxC on 21 gene expression profiles and the RS. Methods: 48 (15 well, 18 moderate, and 15 poorly differentiated) breast cancers were evaluated for gene expression differences between whole sections (WS; containing BxC) and enriched tumor (ET; BxC excluded). Standardized quantitative RT-PCR analysis for the 21 Oncotype DX genes was performed; reference normalized gene expression measurements ranged from 0 to 15, where each 1-unit reflects an approximate 2-fold change in RNA. Analyses of individual genes and the RS were performed on the entire sample set and stratified by tumor grade. Correlation analyses used Pearson's R, concordance analysis used Lin's sample concordance and paired t- tests to characterize differences. Results: There were statistically significant differences in reference normalized gene expression between ET and WS in 6 genes: BAG1 (ET-WS: 0.13 units, p=0.0025), CD68 (ET-WS: -0.64 units, p<0.0001), ER (ET-WS: 0.29 units, p=0.0012), GSTM1 (ET-WS: 0.18 units p=0.0025), STK15 (ET-WS: -0.18 units, p=0.0041) and STMY3 (ET-WS: 0.62 units, p<0.0001). Expression of the macrophage marker CD68 was higher and expression of ER was lower in WS containing BxC. The correlation (0.95) and concordance (0.92) were generally high between WS and ET for RS overall however among moderately differentially tumors, there was a statistically significant mean increase in RS for WS of 3.3 units (p = 0.0012) while among poorly differentiated tumors there was a trend toward a statistically significant decrease in RS for WS of 2.2 units (p=0.0569). Conclusions: Histologic identification of invasive carcinoma and exclusion of BxC is essential for precise RS assessment. Inclusion of BxC in breast cancer specimens is associated with significant changes in the expression of individual genes and impacts the RS. Removal of BxC from breast cancer specimens assessed for gene expression levels is warranted. [Table: see text]


2009 ◽  
Vol 16 (2) ◽  
pp. 467-481 ◽  
Author(s):  
Stéphanie Durand ◽  
Carole Ferraro-Peyret ◽  
Mireille Joufre ◽  
Annie Chave ◽  
Françoise Borson-Chazot ◽  
...  

About 60–70% of papillary thyroid carcinomas (PTC) present a BRAFT1799A gene mutation or a rearrangement of RET gene (RET/PTC). In this study, we examined whether PTC without BRAFT1799A mutation and without RET/PTC rearrangement named PTC-ga(−) were distinguishable from PTC-ga(+) (with one or the other gene alteration) on the basis of gene expression characteristics. We analyzed the mutational state of 116 PTC and we compared gene expression profiles of PTC-ga(+) and PTC-ga(−) from data of a 200 gene macroarray and quantitative PCR. Seventy five PTC were PTC-ga(+) and 41 were PTC-ga(−). Unsupervised analyses of macroarray data by hierarchical clustering led to a complete segregation of PTC-ga(+) and PTC-ga(−). In a series of 42 genes previously recognized as PTC ‘marker’ genes, 22 were found to be expressed at a comparable level in PTC-ga(−) and normal tissue. Thyroid-specific genes, TPO, TG, DIO1, and DIO2 were under-expressed in PTC-ga(+) but expressed at a normal level in PTC-ga(−). A few genes including DUOX1 and DUOX2 were selectively dys-regulated in PTC-ga(−). Tumor grade of PTC-ga(−) was lower than that of PTC-ga(+). There was a strong association between the mutational state and histiotype of PTC; 81% of PTC follicular variants were corresponded to PTC-ga(−), whereas 84% of PTC of classical form were PTC-ga(+). In conclusion, we show that PTC without BRAFT1799A mutation or RET/PTC rearrangement, mainly corresponding to follicular variants, maintain a thyroid differentiation expression level close to that of normal tissue and should be of better prognosis than PTC with one or the other gene alteration.


Sign in / Sign up

Export Citation Format

Share Document