Evaluating Orbitrap Mass Spectrometry for Geochemical Characterization of Crude Oils

Author(s):  
B. G. Vaz ◽  
T. R. Covas ◽  
C. S. Freitas ◽  
L. V. Tose ◽  
M. D. Rangel ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 801
Author(s):  
Kornelia Kaczmarska ◽  
Matthew Taylor ◽  
Udayasika Piyasiri ◽  
Damian Frank

Demand for plant-based proteins and plant-based food products is increasing globally. This trend is driven mainly by global population growth and a consumer shift towards more sustainable and healthier diets. Existing plant-based protein foods and meat mimetics often possess undesirable flavor and sensory properties and there is a need to better understand the formation of desirable meat-like flavors from plant precursors to improve acceptance of novel high-protein plant foods. This study aimed to comprehensively characterize the non-volatile flavor metabolites and the volatiles generated in grilled meat (beef, chicken, and pork) and compare these to commercially available meat substitutes and traditional high-protein plant-based foods (natto, tempeh, and tofu). Solid phase microextraction with gas-chromatography mass-spectrometry was used for elucidation of the flavor volatilome. Untargeted characterization of the non-volatile metabolome was conducted using Orbitrap mass spectrometry and Compound DiscovererTM datamining software. The study revealed greater diversity and higher concentrations of flavor volatiles in plant-based foods in comparison to grilled meat, although the odor activity of specific volatiles was not considered. On average, the total amount of volatiles in plant-based products were higher than in meat. A range of concentrations of free amino acids, dipeptide, tripeptides, tetrapeptides, nucleotides, flavonoids, and other metabolites was identified in meat and plant-based foods.


Archaeometry ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 35-46 ◽  
Author(s):  
D. J. Kennett ◽  
A. J. Anderson ◽  
M. J. Cruz ◽  
G. R. Clark ◽  
G. R. Summerhayes

2013 ◽  
Vol 47 (10) ◽  
pp. 5504-5513 ◽  
Author(s):  
Alberto S. Pereira ◽  
Subir Bhattacharjee ◽  
Jonathan W. Martin

2019 ◽  
Vol 33 (16) ◽  
pp. 1293-1300 ◽  
Author(s):  
Marcos Bouza ◽  
Anyin Li ◽  
Jay G. Forsythe ◽  
Anton Petrov ◽  
Zhong Lin Wang ◽  
...  

2015 ◽  
Vol 7 (11) ◽  
pp. 4450-4463 ◽  
Author(s):  
Jandyson Machado Santos ◽  
Renan de S. Galaverna ◽  
Marcos A. Pudenzi ◽  
Eduardo M. Schmidt ◽  
Nathaniel L. Sanders ◽  
...  

IM-MS, was performed in a new uniform-field drift tube, IM-QTOF instrument. It can resolve and characterize crude oil and its contaminants, as well as petrofuels and their additives.


2016 ◽  
Vol 49 (18) ◽  
pp. 2907-2916 ◽  
Author(s):  
Xing Fan ◽  
Miao Wang ◽  
Lu Chen ◽  
Shou-Ze Wang ◽  
Teng-Gao Zhu ◽  
...  

1972 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
T.G. Powell ◽  
D.M. McKirdy

Australian oils are generally light by world standards. They have API gravities greater than 35°, low sulphur and asphalt contents, and are of paraffinic or naphthenic base. The geochemical similarity of oils from the Bowen-Surat Basin, with the notable exception of the Conloi crude, is most marked in the fraction boiling above 250 °C. Oils from the Cooper, Gippsland and Otway Basins are probably derived from terrestrial organic material, but differ in their degree of maturation as indicated by n-alkane patterns. Samples from the Perth Basin exhibit a similar variation in maturity. In the Carnarvon Basin, the Windalia crude differs from those in deeper reservoirs in containing a higher proportion of oxygen-bearing, nitrogen-bearing, and sulphur-bearing compounds, another sign of a less mature oil. The East Mereenie oil displays an odd-even predominance in its n-alkane distribution which is characteristic of some Lower Palaeozoic crudes. A Papuan Basin condensate is the only available sample produced from a limestone reservoir. This probably accounts for its higher sulphur content. Two seeps obtained from the Papuan Highlands are inspissated residues which may have suffered microbiological alteration.A major control of the composition of Australian crude oils appears to be the depositional environment of the source rock. Most of the oils show evidence of having been generated, at least in part, from terrestrial (as opposed to marine) organic matter. The location of all but one of the reservoirs within sequences dominated by the sandstone - shale association is consistent with the likely contribution of land plant detritus to their source environment. Likewise, low sulphur and asphalt values reflect the scarcity of favourable carbonate-evaporite source and reservoir situations in Australia.


2019 ◽  
Vol 6 (2) ◽  
pp. 181832
Author(s):  
Xiu Chen ◽  
Quan Shi ◽  
Xibin Zhou ◽  
Xuezheng Liu

Aldehydes and ketones (AKs) in cigarette smoke are risk to humans and environment. Due to the complexity of itself and the interference of the smoke tar matrix, the aldehydes and ketones in particle phase (AKPs) of mainstream smoke (MSS) and sidestream smoke (SSS) have not been well investigated. In this study, the AKPs of MSS and SSS were derivatized into polar products by reaction with Girard T reagent. The derivatives were isolated rapidly by column chromatography and analysed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Fifteen species of aldehydes and ketones were detected by positive ion electrospray ionization (ESI) FT-ICR MS: O 1–6 , N 1 O 1–4 , N 2 O 1–3 and N 3 O 2–3 . The total number of AKPs obtained by ESI FT-ICR MS in MSS and SSS is about 1100 and 970, respectively. After hydrolysis, the original AKPs were obtained and 63 carbonyls were identified and quantified by gas chromatography–mass spectrometry (GCMS). The nitrogen-containing and high-oxygen AKPs were further characterized by Orbitrap mass spectrometry. Structures of compounds with high relative abundance in the mass spectrum were speculated (e.g. a series of degradants of cembrenediol) by comparison with the results of GCMS.


Sign in / Sign up

Export Citation Format

Share Document