scholarly journals Explanation of the huge difference between vacuum energy and dark energy in the theory of the dynamic medium of reference

2021 ◽  
Vol 34 (1) ◽  
pp. 61-67
Author(s):  
Olivier Pignard

The object of this article is to present the vacuum energy and the dark energy within the framework of the theory of the dynamic medium of reference and to explain the phenomenal difference between the two energies. The dynamic medium is made up of entities (called gravitons) whose vectorial average of speed determines the speed of the flux of the medium at each point in space. It is shown that inside the horizon of black holes (defined by the Schwarzschild radius), the speed of flux is greater than the speed of light, which means that the gravitons themselves have a higher speed to that of light. The quantum entanglement of two photons which propagate in two opposite directions is due to a connection made by gravitons. It is therefore proposed that the gravitons move at the speed <mml:math display="inline"> <mml:mrow> <mml:msub> <mml:mi>V</mml:mi> <mml:mi>G</mml:mi> </mml:msub> <mml:mo>≈</mml:mo> <mml:mfrac> <mml:mrow> <mml:msub> <mml:mi>R</mml:mi> <mml:mrow> <mml:mtext>universe</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:msub> <mml:mi>t</mml:mi> <mml:mrow> <mml:mtext>Planck</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:math> ≈ 2.4 × 1069 m/s, which makes it possible to guarantee the entanglement of the two photons whatever their position in the Universe and the impossibility to measure the time taken by the influence of a photon to arrive at its twin photon because it is less than the Planck time t Planck. The expression of the vacuum energy and that of the dark energy within the framework of the theory of the dynamic medium of reference is established. The two expressions E vacuum and E dark and the value of the speed of the most distant galaxies V galaxy make it possible to calculate an approximate value of the speed of the gravitons <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>G</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≈</mml:mo> <mml:msub> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> <mml:mrow> <mml:mtext mathvariant="normal">galaxy</mml:mtext> </mml:mrow> </mml:msub> <mml:msqrt> <mml:mfrac> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mtext mathvariant="normal">vacuum</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>E</mml:mi> </mml:mrow> <mml:mrow> <mml:mtext mathvariant="normal">dark</mml:mtext> </mml:mrow> </mml:msub> </mml:mrow> </mml:mfrac> </mml:msqrt> </mml:math> ≈ 2.8 × 1069 m/s. This value of the speed of the graviton is very close to that obtained by the quantum entanglement of two photons, which reinforces the existence of nonmaterial entities going at these phenomenal speeds.

2007 ◽  
Vol 85 (12) ◽  
pp. 1409-1415
Author(s):  
H Shojaie ◽  
M Farhoudi

We consider the effect of the varying speed of light theory on nonrotating black holes. We show that in any varying-c theory, the Schwarzschild solution is neither static nor stationary. For a no-charged black hole, the singularity in the Schwarzschild horizon cannot be removed by coordinate transformation. Hence, no matter can enter the horizon, and the interior part of the black hole is separated from the rest of the Universe. If ċ < 0, then the size of the Schwarzschild radius increases with time. The higher value of the speed of light in the very early Universe may have caused a large reduction in the probability of the creation of the primordial black holes and their population. The same analogy is also considered for charged black holes. PACS No.: 04.70.–s


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg&rsquo;s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (&ldquo;darks&rdquo;) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom&rsquo;s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


2005 ◽  
Vol 20 (11) ◽  
pp. 2403-2414 ◽  
Author(s):  
A. D. DOLGOV

Vacuum and dark energy energy problems are reviewed. Cosmology with non-zero vacuum energy is discussed. The astronomical data which indicate that the universe is filled with an anti-gravitating state of matter are described. The mechanisms which may lead to cancellation of almost infinite vacuum energy down to the astronomically observed value are enumerated with an emphasis to dynamical adjustment.


2004 ◽  
Vol 19 (02) ◽  
pp. 117-134 ◽  
Author(s):  
MANASSE R. MBONYE

The early cosmic inflation, when taken along with the recent observations that the universe is currently dominated by a low density vacuum energy, leads to at least two potential problems which modern cosmology must address. First, there is the old cosmological constant problem, with a new twist: the coincidence problem. Secondly, cosmology still lacks a model to predict the observed current cosmic acceleration and to determine whether or not there is a future exit out of this state (as previously in the inflationary case). This constitutes (what is called here) a dynamical problem. Here a framework is proposed to address these two problems, based on treating the cosmic background vacuum (dark) energy as both dynamical and interacting. The universe behaves as a vacuum-driven cosmic engine which, in search of equilibrium, always back-reacts to vacuum-induced accelerations by increasing its inertia (internal energy) through vacuum energy dissipation. The process couples cosmic vacuum (dark) energy to matter to produce future-directed increasingly comparable amplitudes in these fields by setting up oscillations in the decaying vacuum energy density and corresponding sympathetic ones in the matter fields. By putting bounds on the relative magnitudes of these coupled oscillations the model offers a natural and conceptually simple channel to discuss the coincidence problem, while also suggesting a way to deal with the dynamical problem. A result with important observational implications is an equation of state w(t) which specifically predicts a variable, quasi-periodic, acceleration for the current universe. This result can be directly tested by future observational techniques such as SNAP.


2020 ◽  
Author(s):  
Siva Prasad Kodukula

Abstract Vacuum energy density has been defined and mass formation from ‘space-time’ has been viewed in a different perspective. This explanation for vacuum energy is based on ‘space-time’ and conversion of space in to time keeping ‘space-time density’ as constant. Equations for ‘space-time’ and mutual conversion of space and time have been derived. As a result, new concept of mass creation has been explained. By postulating that space time density of universe is constant, low and high values of cosmological constants has been shown as the exchange of energy between space, time and energy. The concept has been used to explain dark energy concept of the universe. It concluded a result that velocity of light is changing with the apparent expansion of the universe. The derived equation is possible for experimental verification. Obviously it is a contradiction to Big bang model. So the derived equation with the help of quantum concepts explained the 2.7o K cosmic micro wave background radiation. Finally it proposed a relation between diameter of hydrogen atom and Hubble’s constant with another postulate that gives importance to the existence of positive and negative charges below atomic level that describe the basic facts of quantum physics.


2021 ◽  
pp. 79-88
Author(s):  
Gianfranco Bertone

I discuss here black holes, extreme astronomical objects that swallow all forms of matter and radiation surrounding them, and leave behind, as physicist John A. Wheeler said, only their ‘gravitational aura’. These endlessly fascinating objects are the gates where gravity meets quantum physics. Since the pioneering work of scientists like S. Hawking, black holes have become ‘theoretical laboratories’ to explore new physics theories. I discuss how the discovery of gravitational waves from black holes, and the first image of a black hole revealed in 2019, have transformed the study of black holes, and may soon lead to new ground-breaking discoveries. The Universe will disappear. Slowly, it will grow dimmer and dimmer, until it disappears completely.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444016 ◽  
Author(s):  
Joan Solà

The traditional "explanation" for the observed acceleration of the universe is the existence of a positive cosmological constant. However, this can hardly be a truly convincing explanation, as an expanding universe is not expected to have a static vacuum energy density. So, it must be an approximation. This reminds us of the so-called fundamental "constants" of nature. Recent and past measurements of the fine structure constant and of the proton–electron mass ratio suggest that basic quantities of the standard model, such as the QCD scale parameter, Λ QCD , might not be conserved in the course of the cosmological evolution. The masses of the nucleons and of the atomic nuclei would be time-evolving. This can be consistent with General Relativity provided the vacuum energy itself is a dynamical quantity. Another framework realizing this possibility is QHD (Quantum Haplodynamics), a fundamental theory of bound states. If one assumes that its running couplings unify at the Planck scale and that such scale changes slowly with cosmic time, the masses of the nucleons and of the DM particles, including the cosmological term, will evolve with time. This could explain the dark energy of the universe.


Author(s):  
H. Moradpour ◽  
A. H. Ziaie ◽  
M. Kord Zangeneh

Abstract Using Tsallis statistics and its relation with Boltzmann entropy, the Tsallis entropy content of black holes is achieved, a result in full agreement with a recent study (Mejrhit and Ennadifi in Phys Lett B 794:24, 2019). In addition, employing Kaniadakis statistics and its relation with that of Tsallis, the Kaniadakis entropy of black holes is obtained. The Sharma-Mittal and Rényi entropy contents of black holes are also addressed by employing their relations with Tsallis entropy. Thereinafter, relying on the holographic dark energy hypothesis and the obtained entropies, two new holographic dark energy models are introduced and their implications on the dynamics of a flat FRW universe are studied when there is also a pressureless fluid in background. In our setup, the apparent horizon is considered as the IR cutoff, and there is not any mutual interaction between the cosmic fluids. The results indicate that the obtained cosmological models have (i) notable powers to describe the cosmic evolution from the matter-dominated era to the current accelerating universe, and (ii) suitable predictions for the universe age.


Sign in / Sign up

Export Citation Format

Share Document