A Modeling Approach to Simulate Effects of Intercropping and Interspecific Competition in Arable Crops

Author(s):  
Heike Knörzer ◽  
Simone Graeff-Hönninger ◽  
Bettina U. Müller ◽  
Hans-Peter Piepho ◽  
Wilhelm Claupein

Interspecific competition between species influences their individual growth and performance. Neighborhood effects become especially important in intercropping systems, and modeling approaches could be a useful tool to simulate plant growth under different environmental conditions to help identify appropriate combinations of different crops while managing competition. This study gives an overview of different competition models and their underlying modeling approaches. To model intercropping in terms of neighbouring effects in the context of field boundary cultivation, a new model approach was developed and integrated into the DSSAT model. The results indicate the possibility of simulating general competition and beneficial effects due to different incoming solar radiation and soil temperature in a winter wheat/maize intercropping system. Considering more than the competition factors is important, that is, sunlight, due to changed solar radiation alone not explaining yield differences in all cases. For example, intercropped maize could compensate low radiation due to its high radiation use efficiency. Wheat benefited from the increased solar radiation, but even more from the increased soil temperature.

Author(s):  
Heike Knörzer ◽  
Simone Graeff-Hönninger ◽  
Bettina U. Müller ◽  
Hans-Peter Piepho ◽  
Wilhelm Claupein

Interspecific competition between species influences their individual growth and performance. Neighborhood effects become especially important in intercropping systems, and modeling approaches could be a useful tool to simulate plant growth under different environmental conditions to help identify appropriate combinations of different crops while managing competition. This study gives an overview of different competition models and their underlying modeling approaches. To model intercropping in terms of neighbouring effects in the context of field boundary cultivation, a new model approach was developed and integrated into the DSSAT model. The results indicate the possibility of simulating general competition and beneficial effects due to different incoming solar radiation and soil temperature in a winter wheat/maize intercropping system. Considering more than the competition factors is important, that is, sunlight, due to changed solar radiation alone not explaining yield differences in all cases. For example, intercropped maize could compensate low radiation due to its high radiation use efficiency. Wheat benefited from the increased solar radiation, but even more from the increased soil temperature.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


2009 ◽  
Vol 44 (10) ◽  
pp. 1211-1218 ◽  
Author(s):  
Paulo Jorge de Oliveira Ponte de Souza ◽  
Aristides Ribeiro ◽  
Edson José Paulino da Rocha ◽  
José Renato Bouça Farias ◽  
Renata Silva Loureiro ◽  
...  

The objective of this work was to evaluate the efficiency of soybean (Glycine max) in intercepting and using solar radiation under natural field conditions, in the Amazon region, Brazil. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, Pará state, during 2007 and 2008. The radiation use efficiency (RUE) was obtained from the ratio between the above-ground biomass production and the intercepted photosynthetically active radiation (PAR) accumulated to 99 and 95 days after sowing, in 2007 and 2008, respectively. Climatic conditions during the experiment were very distinct, with reduction in rainfall in 2007, which began during the soybean mid-cycle, due to the El Niño phenomenon. An important reduction in the leaf area index and biomass production was observed during 2007. Under natural field conditions in the Amazon region, the values of RUE were 1.46 and 1.99 g MJ-1 PAR in the 2007 and 2008 experiments, respectively. The probable reason for the differences found between these years might be associated to the water restriction in 2007 coupled with the higher air temperature and vapor pressure deficit, and also to the increase in the fraction of diffuse radiation that reached the land surface in 2008.


1993 ◽  
Vol 20 (1) ◽  
pp. 1-5 ◽  
Author(s):  
J. M. Bennett ◽  
T. R. Sinclair ◽  
Li Ma ◽  
K. J. Boote

Abstract Knowledge of the interception of solar radiation by crop canopies and the use of that radiation for carbon assimilation is essential for understanding crop growth and yield as a function of the environment. A field experiment was conducted in 1990 at Gainesville, FL to determine if differences in single leaf carbon exchange rate (CER), canopy radiation interception, radiation use efficiency (g dry matter produced per unit of solar radiation intercepted), and increase in seed harvest index with time exist among several commonly grown peanut (Arachis hypogaea L.) cultivars. Four cultivars (Early Bunch, Florunner, Marc I, and Southern Runner) were grown in field plots on a Kendrick fine sand (a loamy, siliceous, hyperthermic Arenic Paleudult) under fully irrigated, intensive management. Total crop and seed dry matter accumulation were determined, and canopy radiation interception measured at weekly intervals. CER of uppermost, fully expanded sunlit leaves were determined at midday at 2-wk intervals. Single leaf CER's were similar among cultivars (25 to 35 μmol CO2 m-2 s-1) and relatively stable throughout most of the season, before declining during late seed filling. Although interception of radiation differed somewhat among cultivars during early canopy development, total crop dry matter accumulation was linearly related to the cumulative amount of radiation intercepted by all four cultivars (r2=≥0.99). Radiation use efficiency was similar among all cultivars with a mean of 1.00 g dry matter accumulated per MJ of intercepted solar radiation. The increase in seed harvest index with time was linear (r2≤0.94) and the rates of increase were similar among the Early Bunch, Florunner, and Marc I cultivars (0.0058 d-1), but lower (0.0043 d-1) for the later maturing Southern Runner cultivar. Results from this study indicated that the primary differences among these four cultivars were in early-season development of the leaf canopy and resultant radiation interception and the rate of seed growth, rather than the capacity to assimilate carbon dioxide.


Author(s):  
M. A. Awal ◽  
M. O. Gani

Aim: Solar radiation is the unique source of energy which drives the photosynthesis of green plants for producing biomass to living being. Use efficiency of solar radiation to produce biomass has been quantified for many crops in field condition but no study is undertaken for mustard although it is an important oil seed crop in the world as well as in Bangladesh. Therefore, the present study was undertaken to evaluate the radiation-use efficiency of mustard crop. Study Design: The experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates. Place and Duration of Study: The experiment was conducted in the Crop Botany Field Laboratory, Bangladesh Agricultural University, Mymensingh during the winter season extended from November 2011 to March 2012. Methodology: Treatments comprised six mustard varieties viz. BINAsarisha-3, BINAsarisha-4, BINAsarisha-5, BINAsarisha-6, BINAsarisha-7 and BINAsarisha-8 which were grown following standard cultivation techniques to optimize the growth and development. Radiation measurements along the growing season were carried out during solar noon on some sunny days with a Radiometer connected to a 1 m long Line Quantum Sensor. Results: Mustard varieties showed wide variation in terms of plant height, branch number, leaf area index (LAI), dry matter (DM) accumulation, yield components and yield and radiation interception and use. BINAsarisha-6 showed better performance on the aforesaid traits followed by BINAsarisha-7 while lower performance was observed in BINAsarisha-3 and BINAsarisha-4. The higher seed yield (2.41 t ha-1) was obtained in the BINAsarisha-6, the variety also showed higher radiation-use efficiency, RUE (3.75 g MJ-1 PAR) whereas the lower seed yield (about 2.1 t ha-1) was observed in the BINAsarisha-3 or BINAsarisha-4, the varieties also showed the lower RUE (<3 g MJ-1 PAR) which indicate that the higher accumulation of DM in BINAsarisha-6 variety as influenced by higher utilization of solar radiation effectively constitute the seed yield. The temporal RUE showed much fluctuated pattern in all the varieties and higher RUEs were observed at the later part of the crop growth. The variety BINAsarisha-6 also showed the higher seasonal mean RUE whereas BINAsarisha-4 showed the lower. Conclusion: Mustard varieties showed wide variation in growth, yield and radiation interception and use. Higher biomass production as well as higher seed yield is associated with higher utilization of solar radiation.


Author(s):  
Claiton Nardini ◽  
Jaqueline Sgarbossa ◽  
Felipe Schwerz ◽  
Elvis Felipe Elli ◽  
Sandro Luiz Petter Medeiros ◽  
...  

Agroforestry systems are a more sustainable alternative to food and energy production without compromising existing agroecosystems. In this context, the study aimed to analyze the growth characteristics and the solar radition use efficiency of corn cultivated in different arrangements of agroforestry and monoculture systems. The study was conducted in the experimental area of the Laboratory of Agroclimatology of the Federal University of Santa Maria, Campus of Frederico Westphalen – RS, Brazil. The experimental design was a complete randomized block, arranged in a factorial scheme of 3 × 2 × 2 representing two arrangements of agroforestry systems (Intercrop I and Intercrop II) and the monoculture of corn; two forest species, Peltophorum dubium (Spr.) Taubert, denoted as P. dubium and the hybrid Eucalyptus urophylla S.T. Blake × Eucalyptus grandis Hill ex Maiden, denoted as Eucalyptus; and two crop years (Crop I and Crop II), with four replicates each. The growth rates varied between the different systems, with the highest values recorded for the absolute growth rate in the monoculture system, in both crop years, for the relative growth rate in the Eucalyptus-Intercrop I-Crop I and monoculture system-Crop II plots, and for the net assimilation rate in the Eucalyptus-Intercrop II in both crop years. The solar radiation use efficiency was varied between the different systems, with greater values of efficiency found in the Eucalyptus-Intercrop I-Crop I and in Eucalyptus-Intercrop II-Crop II plots. Therefore, different agroforestry arrangements influence corn growth; however, further studies related to this subject are needed as it is a way to optimize land use.


2019 ◽  
Vol 96 (5) ◽  
pp. 457-471 ◽  
Author(s):  
Shadrack O. Nyawade ◽  
Nancy N. Karanja ◽  
Charles K. K. Gachene ◽  
Harun I. Gitari ◽  
Elmar Schulte-Geldermann ◽  
...  

1990 ◽  
Vol 38 (4) ◽  
pp. 731-735 ◽  
Author(s):  
C.J.T. Spitters ◽  
B. Kiewiet ◽  
T. Schiphouwer

A simple model to predict seasonal growth in sugarbeet yield is presented. Time from sowing to the 'growth point date' (the date on which a plant contained 4 g sugar) is characterized by a temp. sum. The increase in sugar yield after this date is calculated from incoming solar radiation using an av. radiation use efficiency. Temp. sums and radiation use efficiencies were estimated for the 11 Dutch sugarbeet regions. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1987 ◽  
Vol 23 (3) ◽  
pp. 325-333 ◽  
Author(s):  
A. Devaux ◽  
A. J. Haverkort

SUMMARYPotatoes (Solanum tuberosum L.) in central Africa are often grown between two rainy seasons to avoid late blight infection. The influence of planting date and setaria mulch treatment on soil temperature, soil humidity, late blight development, ground cover with green leaves, intercepted radiation and tuber yield of potato was studied in crops grown at 1850 m above sea level in Rwanda.The planting dates towards the end of the rainy season resulted in the best yields and these were considerably increased by mulching which retained soil moisture and reduced soil temperature so resulting in a better ground cover. Increased yields in the mulched plots seemed to be due to increased radiation interception rather than to better radiation use efficiency.


2017 ◽  
Author(s):  
Umesh M.R. ◽  
Chittapur B.M.

Growing two or more crops together with close proximity has the challenge of utilizing the available resources. Crop yields need to be increased by improving the use efficiency of resources such as water, nutrients and solar energy. Intercropping is often a means to better use of land and other resources. Success of cereal-legume intercropping will depend on extent of harnessing solar radiation by the canopy profile. Several field experiments conducted in southern Great Plains have indicated radiation use efficiency has a means to evaluate efficiency. In this paper, the growth and utilization of annual legumes as intercrops is reviewed with particular reference to resource use and their feasible with cereals.


Sign in / Sign up

Export Citation Format

Share Document