Transport Protocol Performance for Multi-Hop Transmission in Wireless Sensor Network (WSN)

Author(s):  
Farizah Yunus ◽  
Sharifah H. S. Ariffin ◽  
S. K. Syed-Yusof ◽  
Nor-Syahidatul N. Ismail ◽  
Norsheila Fisal

The need for reliable data delivery at the transport layer for video transmission over IEEE 802.15.4 Wireless Sensor Networks (WSNs) has attracted great attention from the research community due to the applicability of multimedia transmission for many applications. The IEEE 802.15.4 standard is designed to transmit data within a network at a low rate and a short distance. However, the characteristics of WSNs such as dense deployment, limited processing ability, memory, and power supply provide unique challenges to transport protocol designers. Additionally, multimedia applications add further challenges such as requiring large bandwidth, large memory, and high data rate. This chapter discusses the challenges and evaluates the feasibility of transmitting data over an IEEE 802.15.4 network for different transport protocols. The analysis result highlights the comparison of standard transport protocols, namely User Datagram Protocol (UDP), Transport Control Protocol (TCP), and Stream Control Transmission Protocol (SCTP). The performance metrics are analyzed in terms of the packet delivery ratio, energy consumption, and end-to-end delay. Based on the study and analysis that has been done, the standard transport protocol can be modified and improved for multimedia data transmission in WSN. As a conclusion, SCTP shows significant improvement up to 18.635% and 40.19% for delivery ratio compared to TCP and UDP, respectively.

Author(s):  
Farizah Yunus ◽  
Sharifah H. S. Ariffin ◽  
S. K. Syed-Yusof ◽  
Nor-Syahidatul N. Ismail ◽  
Norsheila Fisal

The need for reliable data delivery at the transport layer for video transmission over IEEE 802.15.4 Wireless Sensor Networks (WSNs) has attracted great attention from the research community due to the applicability of multimedia transmission for many applications. The IEEE 802.15.4 standard is designed to transmit data within a network at a low rate and a short distance. However, the characteristics of WSNs such as dense deployment, limited processing ability, memory, and power supply provide unique challenges to transport protocol designers. Additionally, multimedia applications add further challenges such as requiring large bandwidth, large memory, and high data rate. This chapter discusses the challenges and evaluates the feasibility of transmitting data over an IEEE 802.15.4 network for different transport protocols. The analysis result highlights the comparison of standard transport protocols, namely User Datagram Protocol (UDP), Transport Control Protocol (TCP), and Stream Control Transmission Protocol (SCTP). The performance metrics are analyzed in terms of the packet delivery ratio, energy consumption, and end-to-end delay. Based on the study and analysis that has been done, the standard transport protocol can be modified and improved for multimedia data transmission in WSN. As a conclusion, SCTP shows significant improvement up to 18.635% and 40.19% for delivery ratio compared to TCP and UDP, respectively.


Author(s):  
Atif Sharif ◽  
Vidyasagar M. Potdar ◽  
A. J. D. Rathnayaka

In WSN transport, layer protocol plays a significant role in maintaining the node’s energy budget. To find out the dependency of Transport layer on MAC/PHY layer, the authors have extensively tested various transport protocols using IEEE 802.11, IEEE 802.15.4 MAC/PHY protocols for WSN. For IEEE802.11 and IEEE802.15.4 with RTS/CTS ON the TCP variants has shown >80% packet delivery ratio and 5-20% packet loss, while for UDP it is around >63% and 19.54-35.18% respectively. On average 1-3% additional energy is consumed for packet retransmissions in IEEE 802.11 with RTS/CTS OFF whereas significant energy efficiency is observed in IEEE802.15.4 case. For IEEE 802.11 with RTS/CTS ON high throughput, low packet drop rate and increased E-2-E delay is observed, while for IEEE 802.15.4 improved power efficiency and jitter behavior is observed. This has led the foundation for the future development of the cross-layered energy efficient transport protocol for WSN.


2021 ◽  
Vol 11 (4) ◽  
pp. 1362
Author(s):  
Kohei Tomita ◽  
Nobuyoshi Komuro

This paper proposes a Duty-Cycle (DC) control method in order to improve the Packet Delivery Ratio (PDR) for IEEE 802.15.4-compliant heterogeneous Wireless Sensor Networks (WSNs). The proposed method controls the DC so that the buffer occupancy of sensor nodes is less than 1 and assigns DC to each sub-network (sub-network means a network consisting of a router node and its subordinate nodes). In order to use the appropriate DC of each sub-network to obtain the high PDR, this paper gives analytical expressions of the buffer occupancy. The simulation results show that the proposed method achieves a reasonable delay and energy consumption while maintaining high PDR.


Author(s):  
Atif Sharif ◽  
Vidyasagar Potdar ◽  
A. J. D. Rathnayaka

In WSN transport, layer protocol plays a significant role in maintaining the node’s energy budget. To find out the dependency of Transport layer on MAC/PHY layer, the authors have extensively tested various transport protocols using IEEE 802.11, IEEE 802.15.4 MAC/PHY protocols for WSN. For IEEE802.11 and IEEE802.15.4 with RTS/CTS ON the TCP variants has shown >80% packet delivery ratio and 5-20% packet loss, while for UDP it is around >63% and 19.54-35.18% respectively. On average 1-3% additional energy is consumed for packet retransmissions in IEEE 802.11 with RTS/CTS OFF whereas significant energy efficiency is observed in IEEE802.15.4 case. For IEEE 802.11 with RTS/CTS ON high throughput, low packet drop rate and increased E-2-E delay is observed, while for IEEE 802.15.4 improved power efficiency and jitter behavior is observed. This has led the foundation for the future development of the cross-layered energy efficient transport protocol for WSN.


Author(s):  
Sanatan Mohanty ◽  
Sarat Kumar Patra

Wireless Sensor Network (WSN) consists of many tiny, autonomous sensor nodes capable of sensing, computation and communication. The main objective of IEEE 802.15.4 based WSN standard is to provide low cost, low power and short range communication. Providing QoS in WSN is a challenging task due to its severe resource constraints in terms of energy, network bandwidth, memory, and CPU. In this chapter, Quality of Service (QoS) performance evaluation has been carried out for IEEE 802.15.4 networks based WSN star and mesh topology using routing protocols like AODV, DSR and DYMO in QualNet 4.5 simulator. Performance evaluations metrics like Packet Delivery Ratio (PDR), throughput, average end to end delay, energy per goodput bit, network lifetime of battery model and total energy consumption which includes transmission, reception, idle and sleep mode were considered for both the topology. From the simulation studies and analysis, it can be seen that on an average DSR and DYMO performs better than AODV for different traffic load rates.


2012 ◽  
Vol 263-266 ◽  
pp. 932-938
Author(s):  
Hao Ru Su ◽  
Zhi Guo Shi ◽  
Zhi Liang Wang

To solve the beacon collision problem in IEEE 802.15.4/ZigBee cluster-tree Wireless Sensor Networks, we proposed a Sequential Beacon Scheduling (SBS) mechanism. In this mechanism, the Cluster Headers (CHs) choose the beacon transmission time in a certain order. The CH which finishes the sequence chosen sends out control frame to inform other CHs in its interference range. The simulation results indicate that SBS general has better delivery ratio, latency, and throughput than three other beacon scheduling mechanisms.


2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4309 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Abdullah Saeed Alwadie ◽  
Ahthasham Sajid ◽  
...  

Nowadays, there is a growing trend in smart cities. Therefore, the Internet of Things (IoT) enabled Underwater and Wireless Sensor Networks (I-UWSN) are mostly used for monitoring and exploring the environment with the help of smart technology, such as smart cities. The acoustic medium is used in underwater communication and radio frequency is mostly used for wireless sensor networks to make communication more reliable. Therefore, some challenging tasks still exist in I-UWSN, i.e., selection of multiple nodes’ reliable paths towards the sink nodes; and efficient topology of the network. In this research, the novel routing protocol, namely Time Based Reliable Link (TBRL), for dynamic topology is proposed to support smart city. TBRL works in three phases. In the first phase, it discovers the topology of each node in network area using a topology discovery algorithm. In the second phase, the reliability of each established link has been determined while using two nodes reliable model for a smart environment. This reliability model reduces the chances of horizontal and higher depth level communication between nodes and selects next reliable forwarders. In the third phase, all paths are examined and the most reliable path is selected to send data packets. TBRL is simulated with the help of a network simulator tool (NS-2 AquaSim). The TBRL is compared with other well known routing protocols, i.e., Depth Based Routing (DBR) and Reliable Energy-efficient Routing Protocol (R-ERP2R), to check the performance in terms of end to end delay, packet delivery ratio, and energy consumption of a network. Furthermore, the reliability of TBRL is compared with 2H-ACK and 3H-RM. The simulation results proved that TBRL performs approximately 15% better as compared to DBR and 10% better as compared to R-ERP2R in terms of aforementioned performance metrics.


Author(s):  
Sachin Lalar ◽  
. Monika ◽  
Arun Kumar Yadav

Wireless sensor networks (WSNs) establish a new popular of ambient supervision with many latent packages. The environment of wireless sensor networks prone to different forms of attacks as networks are prepared in open and unsecured surroundings. This paper analyses the overall performance of AODV whilst attacked by black hole, through varying the mobility of the nodes within the community. The overall performance metrics which can be used to do the analysis are LPR, packet delivery ratio & Packet loss. The simulation consequences display that the overall performance of each AODV degrades in the presence of black hole attack.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4079
Author(s):  
Nicolás López-Vilos ◽  
Claudio Valencia-Cordero ◽  
Cesar Azurdia-Meza ◽  
Samuel Montejo-Sánchez ◽  
Samuel Baraldi Mafra

Jamming attacks in wireless sensor networks (WSNs) scenarios are detrimental to the performance of these networks and affect the security and stability of the service perceived by users. Therefore, the evaluation of the effectiveness of smart environment platforms based on WSNs has to consider the system performance when data collection is executed under jamming attacks. In this work, we propose an experimental testbed to analyze the performance of a WSN using the IEEE 802.15.4 CSMA/CA unslotted mode under jamming attacks in terms of goodput, packet receive rate (PRR), and energy consumption to assess the risk for users and the network in the smart scenario. The experimental results show that constant and reactive jamming strategies severely impact the evaluated performance metrics and the variance’ of the received signal strength (RSS) for some signal-to-interference-plus-noise ratio (SINR) ranges. The measurements obtained using the experimental testbed were correlated with analytical models. The results show that in the presence of one interferer, for SINR values higher than 4.5 dB, the PRR is almost 0.99, and the goodput 3.05 Kbps, but the system performance is significantly degraded when the amount of interferers increases. Additionally, the energy efficiency associated with reactive strategies is superior to the constant attack strategy. Finally, based on the evaluated metrics and with the proposed experimental testbed, our findings offer a better understanding of jamming attacks on the sensor devices in real smart scenarios.


Sign in / Sign up

Export Citation Format

Share Document