Designing and Implementing a Lightweight WSN MAC Protocol for Smart Home Networking Applications

2016 ◽  
Vol 26 (03) ◽  
pp. 1750043 ◽  
Author(s):  
Ching-Han Chen ◽  
Ming-Yi Lin ◽  
Wen-Hung Lin

Wireless sensor networks (WSNs) represent a promising solution in the fields of the Internet of Things (IoT) and machine-to-machine networks for smart home applications. However, to feasibly deploy wireless sensor devices in a smart home environment, four key requirements must be satisfied: stability, compatibility, reliability routing, and performance and power balance. In this study, we focus on the unreliability problem of the IEEE 802.15.4 WSN medium access control (MAC), which is caused by the contention-based MAC protocol used for channel access. This problem results in a low packet delivery ratio, particularly in a smart home network with only a few sensor nodes. In this paper, we first propose a lightweight WSN protocol for a smart home or an intelligent building, thus replacing the IEEE 802.15.4 protocol, which is highly complex and has a low packet delivery ratio. Subsequently, we describe the development of a discrete event system model for the WSN by using a GRAFCET and propose a development platform based on a reconfigurable FPGA for reducing fabrication cost and time. Finally, a prototype WSN controller ASIC chip without an extra CPU and with our proposed lightweight MAC was developed and tested. It enhanced the packet delivery ratio by up to 100%.

The Medium Access Control (MAC) etiquette is liable for partaking the communal medium amongst the competing nodules. The unique characteristics of VANET enforce many restrictions onto the MAC protocol design. The main aims of a VANET MAC protocol are fairness, Quality of Service (QoS), reliability and so on. In case of V2V communication in VANET, if the target vehicle is not reachable, then packets may not be transmitted correctly. In this paper, a Mobility Aware Cooperative MAC protocol (MAC-MAC) for successful transmission in VANET is proposed. In this protocol, when data is transmitted from V2V, the packet error rate (PER) and packet delivery ratio (PDR) metrics are checked at the receiver end. Depending on these values, the transmission mode of the source is changed as DIRECT or COOPERATIVE. In cooperative mode, the source selects the potential relay nodes based on the residence time and distance to the receiver. By experimental results, it is shown that the proposed MAC-MAC protocol has reduced packet drops, delay and overhead with increased packet delivery ratio.


Sensors are regarded as significant components of electronic devices. The sensor nodes deployed with limited resources, such as the power of battery inserted in the sensor nodes. So the lifetime of wireless sensor networks(WSNs) can be increased by using the energy of the sensor nodes in an efficient way. A major part of energy is consumed during the communication of data. Also, the growing demand for usage of wireless sensors applications in different aspects makes the quality-of-service(QoS) to be one of the paramount issues in wireless sensors applications. QoS guarantee in WSNs is difficult and more challenging due to the fact that the sensors have limited resources and the various applications running over these networks have different constraints in their nature and requirements. The packet delivery ratio(PDR) is a major factor of QoS. To achieve high QoS the packet delivery ratio should be maximum. The energy-efficient unequal clustering routing protocol (EEUCR) is evaluated and results show that it enhances the packet delivery ratio(PDR) and a lifetime of WSNs. In this protocol, the area of the network is divided into a number of rings of unequal size and each ring is further divided into a number of clusters. Rings nearer to the base station(BS) have smaller area and area of rings keeps on increasing as the distance from BS increases for balanced energy consumption. The nodes with heterogeneous energy are deployed in the network. Nodes nearer to the base station have higher energy as compared to farther nodes. Static clustering is used but cluster heads(CHs) are not fixed and are elected on the basis of remaining energy. This helps to increase lifetime of EEUCR. PDR of EEUCR is improved because multiple rings help to find better route which further aids to ensure safe reception of packets at the destination. Simulation results are compared with existing protocols and show that this algorithm gives better results.


2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

A novel secure energy aware game theory (SEGaT) method has proposed to have better coordination in wireless sensor actor networks. An actor has a cluster of sensor nodes which is required to perform different action based on the need that emerge in the network individually or sometime with coordination from other actors. The method has different stages for the fulfilment of these actions. Based on energy aware actor selection (EAAS), selection of number of actors and their approach is the initial step followed by the selection of best team of sensors with each actor to carry out the action and lastly the selection of reliable node within that team to finally nail the action into place in the network for its smooth working and minimum compromise in the energy The simulations are done in MATLAB and result of the energy and the packet delivery ratio are compared with game theory (GaT) and real time energy constraint (RTEC) method. The proposed protocol performs better in terms of energy consumption, packet delivery ratio as compared to its competitive protocols.


Author(s):  
Akram A. Almohammedi ◽  
Nor K. Noordin ◽  
A. Sali ◽  
Fazirulhisyam Hashim ◽  
Abdulmalek Al-Hemyari

Vehicular Ad Hoc Networks (VANETs) is a technology supporting two types of applications, safety and service applications with higher and lower priorities respectively. Thereby, Medium Access Control (MAC) protocol is designed to provide reliable and efficient data broadcasting based on prioritization. Different from the IEEE 1609.4 (legacy), HER-MAC protocol is a new multi-channel MAC proposed for VANETs, offering remarkable performance with regards to safety applications transmission. This paper focuses on the analysis of packet delivery ratio of the HER-MAC protocol under non-saturated conditions. 1-D and 2-D Markov chains have been developed for safety and non-safety applications respectively, to evaluate mathematically the performance of HER-MAC protocol. The presented work has taken into account the freezing of the backoff timer for both applications and the backoff stages along with short retry limit for non-safety applications in order to meet the IEEE 802.11p specifications. It highlights that taking these elements into consideration are important in modeling the system, to provide an accurate estimation of the channel access, and guarantees that no packet is served indefinitely. More precise results of the system packet delivery ratio have been yield. The probability of successful transmission and collisions were derived and used to compute the packet delivery ratio. The simulation results validate the analytical results of our models and indicate that the performance of our models outperformed the existing models in terms of the packet delivery ratio under different number of vehicles and contention window.


The advent of wireless sensor networks (WSN) has led in recent revolutionary modifications in electronic and communication systems .Various applications in wireless network needs time synchronization as a basic requirement. Wireless sensor nodes are tiny in size and operated at low energy to record the required physical parameters for low-duty apps. Because nodes have a tiny battery with a lower life span, power management is crucial for long-term working with the sensors. Wireless Sensor Network is a set of sensor nodes used to send and receive data packets from one sensor node to another. This work aims to propose three protocols such as Receiver Centric MAC protocol (RC-MAC), Improved Receiver Centric MAC protocol (IRC-MAC) and Intelligent Traffic and Resource Elastic Energy MAC protocol (ITREE-MAC) for the WSN environment and based on the application. These protocols help in studying the parametric measures such as delay, energy consumption, packet delivery ratio and throughput. The comparative analysis is carried out to select the more efficient protocol for the application of wireless sensor networks. This research work is implemented and simulated by using NS 2.35 Simulator. Based on the simulation results obtained for proposed protocols using the NS2 simulator. The performance of ITREE-MAC protocol shows better results for parameters end to end delay, energy consumption, throughput, packet delivery ratio. So the overall performance of ITREE-MAC protocol is much better than other three IEEE802.11 MAC, RC-MAC and IRC-MAC protocols. As per results obtained, energy consumption is less in ITREE-MAC protocol and save the power in wireless sensor network applications


2021 ◽  
Vol 11 (4) ◽  
pp. 1362
Author(s):  
Kohei Tomita ◽  
Nobuyoshi Komuro

This paper proposes a Duty-Cycle (DC) control method in order to improve the Packet Delivery Ratio (PDR) for IEEE 802.15.4-compliant heterogeneous Wireless Sensor Networks (WSNs). The proposed method controls the DC so that the buffer occupancy of sensor nodes is less than 1 and assigns DC to each sub-network (sub-network means a network consisting of a router node and its subordinate nodes). In order to use the appropriate DC of each sub-network to obtain the high PDR, this paper gives analytical expressions of the buffer occupancy. The simulation results show that the proposed method achieves a reasonable delay and energy consumption while maintaining high PDR.


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 6-14
Author(s):  
Shaymaa Kadhim Mohsin ◽  
Maysoon A. Mohammed ◽  
Helaa Mohammed Yassien

Bluetooth uses 2.4 GHz in ISM (industrial, scientific, and medical) band, which it shares with other wireless operating system technologies like ZigBee and WLAN. The Bluetooth core design comprises a low-energy version of a low-rate wireless personal area network and supports point-to-point or point-to-multipoint connections. The aim of the study is to develop a Bluetooth mesh flooding and to estimate packet delivery ratio in wireless sensor networks to model asynchronous transmissions including a visual representation of a mesh network, node-related statistics, and a packet delivery ratio (PDR). This work provides a platform for Bluetooth networking by analyzing the flooding of the network layers and configuring the architecture of a multi-node Bluetooth mesh. Five simulation scenarios have been presented to evaluate the network flooding performance. These scenarios have been performed over an area of 200×200 meters including 81 randomly distributed nodes including different Relay/End node configurations and source-destination linking between nodes. The results indicate that the proposed approach can create a pathway between the source node and destination node within a mesh network of randomly distributed End and Relay nodes using MATLAB environment. The results include probability calculation of getting a linking between two nodes based on Monte Carlo method, which was 88.7428 %, while the Average-hop-count linking between these nodes was 8. Based on the conducted survey, this is the first study to examine and demonstrate Bluetooth mesh flooding and estimate packet delivery ratio in wireless sensor networks


This paper develops a method to detect the failures of wireless links between one sensor nodes to another sensor node in WSN environment. Every node in WSN has certain properties which may vary time to time based on its ability to transfer or receive the packets on it. This property or features are obtained from every node and they are classified using Neural Networks (NN) classifier with predetermined feature set which are belonging to both weak link and good link between nodes in wireless networks. The proposed system performance is analyzed by computing Packet Delivery Ratio (PDR), Link Failure Detection Rate (LFDR) and latency report.


Author(s):  
Zahoor Ahmed ◽  
Kamalrulnizam Abu Bakar

The deployment of Linear Wireless Sensor Network (LWSN) in underwater environment has attracted several research studies in the underwater data collection research domain. One of the major issues in underwater data collection is the lack of robust structure in the deployment of sensor nodes. The challenge is more obvious when considering a linear pipeline that covers hundreds of kilometers. In most of the previous work, nodes are deployed not considering heterogeneity and capacity of the various sensor nodes. This lead to the problem of inefficient data delivery from the sensor nodes on the underwater pipeline to the sink node at the water surface. Therefore, in this study, an Enhanced Underwater Linear Wireless Sensor Network Deployment (EULWSND) has been proposed in order to improve the robustness in linear sensor underwater data collection. To this end, this paper presents a review of related literature in an underwater linear wireless sensor network. Further, a deployment strategy is discussed considering linearity of the underwater pipeline and heterogeneity of sensor nodes. Some research challenges and directions are identified for future research work. Furthermore, the proposed deployment strategy is implemented using AQUASIM and compared with an existing data collection scheme. The result demonstrates that the proposed EULWSND outperforms the existing Dynamic Address Routing Protocol for Pipeline Monitoring (DARP-PM) in terms of overhead and packet delivery ratio metrics. The scheme performs better in terms of lower overhead with 17.4% and higher packet delivery with 20.5%.


Author(s):  
Sanatan Mohanty ◽  
Sarat Kumar Patra

Wireless Sensor Network (WSN) consists of many tiny, autonomous sensor nodes capable of sensing, computation and communication. The main objective of IEEE 802.15.4 based WSN standard is to provide low cost, low power and short range communication. Providing QoS in WSN is a challenging task due to its severe resource constraints in terms of energy, network bandwidth, memory, and CPU. In this chapter, Quality of Service (QoS) performance evaluation has been carried out for IEEE 802.15.4 networks based WSN star and mesh topology using routing protocols like AODV, DSR and DYMO in QualNet 4.5 simulator. Performance evaluations metrics like Packet Delivery Ratio (PDR), throughput, average end to end delay, energy per goodput bit, network lifetime of battery model and total energy consumption which includes transmission, reception, idle and sleep mode were considered for both the topology. From the simulation studies and analysis, it can be seen that on an average DSR and DYMO performs better than AODV for different traffic load rates.


Sign in / Sign up

Export Citation Format

Share Document