Classification of fruits and vegetables using ResNet model.
Abstract Agriculture is one of the important parts of Indian economy. Agricultural field has more contribution towards growth and stability of the nation. Therefore, a current technologies and innovations can help in order to experiment new techniques and methods in the agricultural field. At Present Artificial Intelligence (AI) is one of the main, effective, and widely used technology. Especially, Deep Learning (DL) has numerous functions due to its capability to learn robust interpretations from images. Convolutional Neural Networks (CNN) is the major Deep Learning architecture for image classification. This paper is mainly focus on the deep learning techniques to classify Fruits and Vegetables, the model creation and implementation to identify Fruits and Vegetables on the fruit360 dataset. The models created are Support Vector Machine (SVM), K Nearest Neighbor (KNN), Decision Tree (DT), ResNet Pretrained Model, Convolutional Neural Network (CNN), Multilayer Perceptron (MLP). Among the different models ResNet pretrained Model performed the best with an accuracy of 95.83%.