scholarly journals Classification of fruits and vegetables using ResNet model.

Author(s):  
P. Sukhetha ◽  
N. Hemalatha ◽  
Raji Sukumar

Abstract Agriculture is one of the important parts of Indian economy. Agricultural field has more contribution towards growth and stability of the nation. Therefore, a current technologies and innovations can help in order to experiment new techniques and methods in the agricultural field. At Present Artificial Intelligence (AI) is one of the main, effective, and widely used technology. Especially, Deep Learning (DL) has numerous functions due to its capability to learn robust interpretations from images. Convolutional Neural Networks (CNN) is the major Deep Learning architecture for image classification. This paper is mainly focus on the deep learning techniques to classify Fruits and Vegetables, the model creation and implementation to identify Fruits and Vegetables on the fruit360 dataset. The models created are Support Vector Machine (SVM), K Nearest Neighbor (KNN), Decision Tree (DT), ResNet Pretrained Model, Convolutional Neural Network (CNN), Multilayer Perceptron (MLP). Among the different models ResNet pretrained Model performed the best with an accuracy of 95.83%.

2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Jun Meng ◽  
Qiang Kang ◽  
Zheng Chang ◽  
Yushi Luan

Abstract Background Long noncoding RNAs (lncRNAs) play an important role in regulating biological activities and their prediction is significant for exploring biological processes. Long short-term memory (LSTM) and convolutional neural network (CNN) can automatically extract and learn the abstract information from the encoded RNA sequences to avoid complex feature engineering. An ensemble model learns the information from multiple perspectives and shows better performance than a single model. It is feasible and interesting that the RNA sequence is considered as sentence and image to train LSTM and CNN respectively, and then the trained models are hybridized to predict lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary. Results To boost the performance of predicting lncRNAs, this paper proposes a hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which does not require prior knowledge and only uses RNA sequences to train the models for predicting plant lncRNAs. It not only learns the diversified information from RNA sequences encoded by p-nucleotide and one-hot encodings, but also takes advantages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are adjusted and three hybrid strategies are tested to maximize its performance. Experiment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score on Zea mays dataset which are better than those of several shallow machine learning methods (support vector machine, random forest, k-nearest neighbor, decision tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet). Conclusions PlncRNA-HDeep is feasible and obtains the credible predictive results. It may also provide valuable references for other related research.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Renzhou Gui ◽  
Tongjie Chen ◽  
Han Nie

With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.


Author(s):  
Mohamed Loey ◽  
Mukdad Rasheed Naman ◽  
Hala Helmy Zayed

Blood disease detection and diagnosis using blood cells images is an interesting and active research area in both the computer and medical fields. There are many techniques developed to examine blood samples to detect leukemia disease, these techniques are the traditional techniques and the deep learning (DL) technique. This article presents a survey on the different traditional techniques and DL approaches that have been employed in blood disease diagnosis based on blood cells images and to compare between the two approaches in quality of assessment, accuracy, cost and speed. This article covers 19 studies, 11 of these studies were in traditional techniques which used image processing and machine learning (ML) algorithms such as K-means, K-nearest neighbor (KNN), Naïve Bayes, Support Vector Machine (SVM), and 8 studies in advanced techniques which used DL, particularly Convolutional Neural Networks (CNNs) which is the most widely used in the field of blood image diseases detection since it is highly accurate, fast, and has the least cost. In addition, it analyzes a number of recent works that have been introduced in the field including the size of the dataset, the used methodologies, the obtained results, etc. Finally, based on the conducted study, it can be concluded that the proposed system CNN was achieving huge successes in the field whether regarding features extraction or classification task, time, accuracy, and had a lower cost in the detection of leukemia diseases.


2020 ◽  
Vol 10 (4) ◽  
pp. 1525 ◽  
Author(s):  
Mashael Aldayel ◽  
Mourad Ykhlef ◽  
Abeer Al-Nafjan

The traditional marketing methodologies (e.g., television commercials and newspaper advertisements) may be unsuccessful at selling products because they do not robustly stimulate the consumers to purchase a particular product. Such conventional marketing methods attempt to determine the attitude of the consumers toward a product, which may not represent the real behavior at the point of purchase. It is likely that the marketers misunderstand the consumer behavior because the predicted attitude does not always reflect the real purchasing behaviors of the consumers. This research study was aimed at bridging the gap between traditional market research, which relies on explicit consumer responses, and neuromarketing research, which reflects the implicit consumer responses. The EEG-based preference recognition in neuromarketing was extensively reviewed. Another gap in neuromarketing research is the lack of extensive data-mining approaches for the prediction and classification of the consumer preferences. Therefore, in this work, a deep-learning approach is adopted to detect the consumer preferences by using EEG signals from the DEAP dataset by considering the power spectral density and valence features. The results demonstrated that, although the proposed deep-learning exhibits a higher accuracy, recall, and precision compared with the k-nearest neighbor and support vector machine algorithms, random forest reaches similar results to deep learning on the same dataset.


Author(s):  
Sophia S ◽  
Rajamohana SP

In recent times, online shoppers are technically knowledgeable and open to product reviews. They usually read the buyer reviews and ratings before purchasing any product from ecommerce website. For the better understanding of products or services, reviews provided by the customers gives the vital source of information. In order to buy the right products for the individuals and to make the business decisions for the Organization online reviews are very important. These reviews or opinions in turn, allow us to find out the strength and weakness of the products. Spam reviews are written in order to falsely promote or demote a few target products or services. Also, detecting the spam reviews has also become more critical issue for the customer to make good decision during the purchase of the product. A major problem in identifying the fake review detection is high dimensionality of the feature space. Therefore, feature selection is an essential step in the fake review detection to reduce dimensionality of the feature space and to improve the classification accuracy. Hence it is important to detect the spam reviews but the major issues in spam review detection are the high dimensionality of feature space which contains redundant, noisy and irrelevant features. To resolve this, Deep Learning Techniques for selecting features is necessary. To classify the features, classifiers such as Naive Bayes, K Nearest Neighbor are used. An analysis of the various techniques employed to identify false and genuine reviews has been surveyed.


2021 ◽  
Author(s):  
Monika Jyotiyana ◽  
Nishtha Kesswani ◽  
Munish Kumar

Abstract Deep learning techniques are playing an important role in the classification and prediction of diseases. Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging. The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson’s disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson’s disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing approaches like Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Classification and Regression Trees, Random Forest, Linear Regression, Logistic Regression, Multi-Layer Perceptron, and Naive Bayes.


Author(s):  
Saneesh Cleatus T ◽  
Dr. Thungamani M

In this paper we study the effect of nonlinear preprocessing techniques in the classification of electroencephalogram (EEG) signals. These methods are used for classifying the EEG signals captured from epileptic seizure activity and brain tumor category. For the first category, preprocessing is carried out using elliptical filters, and statistical features such as Shannon entropy, mean, standard deviation, skewness and band power. K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) were used for the classification. For the brain tumor EEG signals, empirical mode decomposition is used as a pre-processing technique along with standard statistical features for the classification of normal and abnormal EEG signals. For epileptic signals we have achieved an average accuracy of 94% for a three-class classification and for brain tumor signals we have achieved a classification accuracy of 98% considering it as a two class problem.


Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Anifuddin Azis

Indonesia merupakan negara dengan keanekaragaman hayati terbesar kedua di dunia setelah Brazil. Indonesia memiliki sekitar 25.000 spesies tumbuhan dan 400.000 jenis hewan dan ikan. Diperkirakan 8.500 spesies ikan hidup di perairan Indonesia atau merupakan 45% dari jumlah spesies yang ada di dunia, dengan sekitar 7.000an adalah spesies ikan laut. Untuk menentukan berapa jumlah spesies tersebut dibutuhkan suatu keahlian di bidang taksonomi. Dalam pelaksanaannya mengidentifikasi suatu jenis ikan bukanlah hal yang mudah karena memerlukan suatu metode dan peralatan tertentu, juga pustaka mengenai taksonomi. Pemrosesan video atau citra pada data ekosistem perairan yang dilakukan secara otomatis mulai dikembangkan. Dalam pengembangannya, proses deteksi dan identifikasi spesies ikan menjadi suatu tantangan dibandingkan dengan deteksi dan identifikasi pada objek yang lain. Metode deep learning yang berhasil dalam melakukan klasifikasi objek pada citra mampu untuk menganalisa data secara langsung tanpa adanya ekstraksi fitur pada data secara khusus. Sistem tersebut memiliki parameter atau bobot yang berfungsi sebagai ektraksi fitur maupun sebagai pengklasifikasi. Data yang diproses menghasilkan output yang diharapkan semirip mungkin dengan data output yang sesungguhnya.  CNN merupakan arsitektur deep learning yang mampu mereduksi dimensi pada data tanpa menghilangkan ciri atau fitur pada data tersebut. Pada penelitian ini akan dikembangkan model hybrid CNN (Convolutional Neural Networks) untuk mengekstraksi fitur dan beberapa algoritma klasifikasi untuk mengidentifikasi spesies ikan. Algoritma klasifikasi yang digunakan pada penelitian ini adalah : Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbor (KNN),  Random Forest, Backpropagation.


2021 ◽  
Vol 5 (3) ◽  
pp. 905
Author(s):  
Muhammad Afrizal Amrustian ◽  
Vika Febri Muliati ◽  
Elsa Elvira Awal

Japanese is one of the most difficult languages to understand and read. Japanese writing that does not use the alphabet is the reason for the difficulty of the Japanese language to read. There are three types of Japanese, namely kanji, katakana, and hiragana. Hiragana letters are the most commonly used type of writing. In addition, hiragana has a cursive nature, so each person's writing will be different. Machine learning methods can be used to read Japanese letters by recognizing the image of the letters. The Japanese letters that are used in this study are hiragana vowels. This study focuses on conducting a comparative study of machine learning methods for the image classification of Japanese letters. The machine learning methods that were successfully compared are Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbor. The results of the comparative study show that the K-Nearest Neighbor method is the best method for image classification of hiragana vowels. K-Nearest Neighbor gets an accuracy of 89.4% with a low error rate.


Sign in / Sign up

Export Citation Format

Share Document