Autonomous Execution of Reliable Sensor Network Applications on Varying Node Hardware

Author(s):  
Steffen Ortmann ◽  
Peter Langendoerfer

The authors present a user-centric design flow for ease of use for specifying Wireless Sensor Network applications even for heterogeneous hardware. The design flow provides very high abstraction and user guidance to refrain the user from implementation, deployment, and hardware details including heterogeneity of the available sensor nodes. Automatic event configuration is accomplished by using a flexible Event Specification Language (ESL) and Event Decision Trees (EDTs) for distributed detection and determination of real world phenomena. EDTs autonomously adapt to heterogeneous availability of sensing capabilities by pruning and subscription to other nodes for missing information. The authors analyze the approaches in theory and praxis. They present two of numerous simulated scenarios proving the robustness and energy efficiency of the approach while having learnt appropriate configuration properties that are required for correct sensing. They can deal with failing sensors despite performing pretty well in terms of accuracy and number of messages exchanged.

Author(s):  
Aditi Paul ◽  
Indu Pandey

Energy harvesting wireless sensor network (EH-WSN) harvests energy from the environment to supply power to the sensor nodes which apparently enhances their lifetime. However, the unpredictable nature of the resources throws challenges to the sustainability of energy supply for the continuous network operation. This creates a gap between unstable energy harvesting rates & energy requirements of the nodes of the network. The state-of-the-art algorithms proposed so far to address this problem domain are not able to bridge the gap fully to standardize the framework. Hence there is considerable scope of research to create a trade-off between EH techniques and specially designed protocols for in EH-WSN. Current study evaluates the performance and efficiency of some futuristic techniques which incorporate advanced tools and algorithms. The study aims to identify the strength and weaknesses of the proposed techniques which can emerge specific research requirement in this field. Finally, we propose a research direction towards Multi-source Hybrid EH-WSN (MHEHWSN) which is able to maximize energy availability and functional efficiency. The scope of this study is to develop a notion of a framework which eliminates the limitations of very recent techniques of EH-WSN by including multiple energy resources to extract required energy even in presence of unpredictability. However, keeping in mind the ease of use and less complex structure Multi-source hybrid EH technique requires a careful design paradigm.


Author(s):  
Sudha H. Thimmaiah ◽  
Mahadevan G

<p>Wireless sensor network (WSN) is composed of low cost, tiny sensor that communicates with each other and transmit sensory data to its base station/sink. The sensor network has been adopted by various industries and organization for their ease of use and is considered to be the most sorted future paradigm. The sensor devices are remotely deployed and powered by batteries. Preserving the energy of sensor devices is most desired. To preserve the battery efficient routing technique is needed. Most routing technique required prior knowledge of sensor nodes location in order to provide energy efficiency. Many existing technique have been proposed in recent time to determine the position of sensor nodes. The existing technique proposed so for suffers in estimating the likelihood of localization error. Reducing the error in localization is most desired. This work present a (Time-of-Arrival) based localization technique and also present adaptive information estimation model to reduce/approximate the localization error in wireless sensor network. The author compares our proposed localization model with existing protocol and analyses its efficiency.</p>


Author(s):  
Shauban Ali Solangi ◽  
Dil Nawaz Hakro ◽  
Muhammad Memon ◽  
Khalil-ur-Rehman Khoumbati ◽  
Akhtar Hussain Jalbani

WSN (Wireless Sensor Network) comprises of small-sized and constraint-capability SN (Sensor Nodes) which record, send and receive data, sensed to a sink. The network lifetime and energy usability are important challenges to be dealt with. During the working of the SN, the maximum amount of energy is consumed than sensing and processing of data. Therefore, an efficient transmission of the data is required so that the energy can be saved. In this paper, a novel routing and scheduling method for WSNs using GA (Genetic Algorithm) is presented, where the sinks employed on four sides of the sensor field. These sinks collect the data from the SNs having the optimal distance towards the respective sink. The proposed scheme finds the optimized path using GA, during transmission of data from SN to the nearest sink. First, we run the GA for determination of routing paths, where a source SN finds the possible number of optimal hops. Second, the hops or intermediate relay SNs are assumed to relay the data towards the sink, efficiently. The performance is experimented and evaluated using MATLAB R2016b. The simulations have carried out through comparing the proposed scheme with TEEN (Threshold Sensitive Energy Efficient Sensor Network Protocol). The results of simulation comprise of 10 and 20 number of SNs, discretely. Additionally, the direct distance of each node is calculated and the distance through multiple hops from/to the nearest sink is also evaluated. The achievements of the proposed technique are to save both energy and distance for the sake of network longevity and optimal and precise data delivery by multiple hops.


Author(s):  
Steffen Ortmann ◽  
Michael Maaser ◽  
Peter Langendoerfer

Within pervasive intelligent environments, Wireless Sensor Networks (WSNs) will surround and serve us at any place and any time. A proper usability is considered essential for WSNs supporting real life applications. With this chapter, we aim at ease of use for specifying new applications that have to autonomously cope with expected and unexpected heterogeneity, sudden failures, and energy efficiency. Starting with general design criteria for applications in WSNs, we created a user-centric design flow for pervasive applications. The design flow provides very high abstraction and user guidance to refrain the user from implementation-, deployment- and hardware-details including heterogeneity of the available sensor nodes. Automatic event configuration is accomplished by using a flexible Event Specification Language (ESL) and Event Decision Trees (EDTs) for distributed detection and determination of real world phenomena. EDTs autonomously adapt to heterogeneous availability of sensing capabilities by pruning and subscription to other nodes for missing information. We present one of numerous simulated scenarios proving the robustness and energy efficiency with regard to the required network communications. From these, we learned how to deduce appropriate bounds for configuration of collaboration region and leasing time by asking for expected properties of the phenomena to be detected.


2020 ◽  
pp. 582-595
Author(s):  
Wassim Jerbi ◽  
Hafedh Trabelsi ◽  
Abderrahmen Guermazi

The Cluster Head is selected on the basis of maximum number of nodes connected, thus several sensor nodes cannot reach any CH, even though they are in the transmission range. These nodes are called the isolated nodes. To solve this problem, the proposed a sub_cluster protocol, its role is to reduce the sensor nodes which do not belong the cluster. The major novel contribution of the proposed work is the sub_cluster protocol which provides coverage of the whole network with a minimum number of isolated nodes and has a very high connectivity rates. The sub_cluster protocol allows firstly with great cluster can be grouped many sub_cluster protocol connected to major CH, each sub_cluster protocol, can be connected of the maximum nodes non CH.


Author(s):  
Chao Wang

Background: It is important to improve the quality of service by using congestion detection technology to find the potential congestion as early as possible in wireless sensor network. Methods: So an improved congestion control scheme based on traffic assignment and reassignment algorithm is proposed for congestion avoidance, detection and mitigation. The congestion area of the network is detected by predicting and setting threshold. When the congestion occurs, sensor nodes can be recovery quickly from congestion by adopting reasonable method of traffic reassignment. And the method can ensure the data in the congestion areas can be transferred to noncongestion areas as soon as possible. Results: The simulation results indicate that the proposed scheme can reduce the number of loss packets, improve the throughput, stabilize the average transmission rate of source node and reduce the end-to-end delay. Conclusion: : So the proposed scheme can enhance the overall performance of the network. Keywords: wireless sensor network; congestion control; congestion detection; congestion mitigation; traffic assignment; traffic reassignment.


2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


2021 ◽  
Vol 68 ◽  
pp. 105-110
Author(s):  
M.N. Shakib ◽  
M. Moghavvemi ◽  
M.A. Rahman ◽  
R.M. Ramli ◽  
H.S. Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document