Mobile Video Cloud Networks

2015 ◽  
pp. 1000-1024
Author(s):  
Qi Wang ◽  
James Nightingale ◽  
Runpeng Wang ◽  
Naeem Ramzan ◽  
Christos Grecos ◽  
...  

Mobile multimedia computing has become ubiquitous in everyday life. However, mobile device users involved in resource-demanding visual applications such as video streaming often encounter performance degradations due to their mobile devices' intrinsic constraints in processing power, storage, and battery capacity. Cloud computing can be explored to circumvent such problems thanks to the vast resources available in the cloud. Mobile video cloud computing has thus emerged as an important research and development topic to achieve high-performance, innovative networked video applications. This chapter discusses the recent advances in mobile video cloud technologies and applications. The authors investigate mobile video cloud systems starting with the various mobile cloud paradigms and then present challenges and solutions of mobile video cloud management for mobility, context, and security. Furthermore, the authors examine the latest video coding standards and explore methods based on parallelisation and scalability for their optimised application over mobile clouds, followed by three highlighted mobile cloud video applications including streaming, transcoding, and gaming. Finally, future directions in this area are envisioned.

Author(s):  
Qi Wang ◽  
James Nightingale ◽  
Runpeng Wang ◽  
Naeem Ramzan ◽  
Christos Grecos ◽  
...  

Mobile multimedia computing has become ubiquitous in everyday life. However, mobile device users involved in resource-demanding visual applications such as video streaming often encounter performance degradations due to their mobile devices’ intrinsic constraints in processing power, storage, and battery capacity. Cloud computing can be explored to circumvent such problems thanks to the vast resources available in the cloud. Mobile video cloud computing has thus emerged as an important research and development topic to achieve high-performance, innovative networked video applications. This chapter discusses the recent advances in mobile video cloud technologies and applications. The authors investigate mobile video cloud systems starting with the various mobile cloud paradigms and then present challenges and solutions of mobile video cloud management for mobility, context, and security. Furthermore, the authors examine the latest video coding standards and explore methods based on parallelisation and scalability for their optimised application over mobile clouds, followed by three highlighted mobile cloud video applications including streaming, transcoding, and gaming. Finally, future directions in this area are envisioned.


2018 ◽  
Vol 17 (2) ◽  
pp. 7335-7349
Author(s):  
Rashid Alakbarov

The article analyzes the advantages of mobile cloud technologies and problems emerging during the use of those. The network infrastructure created based on cloudlets at the second level of mobile cloud computing with hierarchical structure is analyzed. At the same time, the article explores the issues of satisfaction of demand of mobile equipment for computing and memory resources by using these technologies. The article presents one solution for the allocation of mobile user requests in virtual machines created in cloudlets located near base stations of wireless metropolitan area networks (WMAN) in a balanced way by considering the technical capacity of those. Alongside, the article considers the solution of user problem during designated time and the issue of determining virtual machines satisfying other requirements. For this purpose, different characteristics of the stated problem, virtual machines, as well as communication channels between a user and virtual machines are considered. By using possible values determining the importance of cloudlets, conditions for loading software applications of a user to a virtual machine are explored and an appropriate method is proposed.


Author(s):  
Zhefu Shi ◽  
Cory Beard

Mobile Cloud Computing (MCC) integrates cloud computing into the mobile environment and overcomes obstacles related to performance (e.g., bandwidth, throughput) and environment (e.g., heterogeneity, scalability, and availability). Quality of Service (QoS), such as end-to-end delay, packet loss ratio, etc., is vital for MCC applications. In this chapter, several important approaches for performance evaluation in MCC are introduced. These approaches, such as Markov Processes, Scheduling, and Game Theory, are the most popular methodologies in current research about performance evaluation in MCC. QoS is special in MCC compared to other environments. Important QoS problems with details in MCC and corresponding designs and solutions are explained. This chapter covers the most important research problems and current status related to performance evaluation and QoS in MCC.


Author(s):  
Claudio Estevez

Cloud computing is consistently proving to be the dominant architecture of the future, and mobile technology is the catalyst. By having the processing power and storage remotely accessible, the main focus of the terminal is now related to connectivity and user-interface. The success of cloud-based applications greatly depends on the throughput experienced by the end user, which is why transport protocols play a key role in mobile cloud computing. This chapter discusses the main issues encountered in cloud networks that affect connection-oriented transport protocols. These issues include, but are not limited to, large delay connections, bandwidth variations, power consumption, and high segment loss rates. To reduce these adverse effects, a set of proposed solutions are presented; furthermore, the advantages and disadvantages are discussed. Finally, suggestions are made for future mobile cloud computing transport-layer designs that address different aspects of the network, such as transparency, congestion-intensity estimation, and quality-of-service integration.


Author(s):  
Atta ur Rehman Khan ◽  
Abdul Nasir Khan

Mobile devices are gaining high popularity due to support for a wide range of applications. However, the mobile devices are resource constrained and many applications require high resources. To cater to this issue, the researchers envision usage of mobile cloud computing technology which offers high performance computing, execution of resource intensive applications, and energy efficiency. This chapter highlights importance of mobile devices, high performance applications, and the computing challenges of mobile devices. It also provides a brief introduction to mobile cloud computing technology, its architecture, types of mobile applications, computation offloading process, effective offloading challenges, and high performance computing application on mobile devises that are enabled by mobile cloud computing technology.


Author(s):  
Darshan M. Tank

With the development of cloud computing and mobility, mobile cloud computing has emerged and become a focus of research. Mobile Cloud Computing (MCC) integrates mobile computing and cloud computing aiming to extend mobile devices capabilities. By the means of on-demand self-service and extendibility, it can offer the infrastructure, platform, and software services in a cloud to mobile users through the mobile network. There is huge market for mobile based e-Commerce applications across the globe. Security and privacy are the key issues for mobile cloud computing applications. The limited processing power and memory of a mobile device dependent on inherently unreliable wireless channel for communication and battery for power leaves little scope for a reliable security layer. Thus there is a need for a lightweight secure framework that provides security with minimum communication and processing overhead on mobile devices. The security and privacy protection services can be achieved with the help of secure mobile-cloud application services.


Author(s):  
T. Francis

Cloud computing is a technology that was developed a decade ago to provide uninterrupted, scalable services to users and organizations. Cloud computing has also become an attractive feature for mobile users due to the limited features of mobile devices. The combination of cloud technologies with mobile technologies resulted in a new area of computing called mobile cloud computing. This combined technology is used to augment the resources existing in Smart devices. In recent times, Fog computing, Edge computing, and Clone Cloud computing techniques have become the latest trends after mobile cloud computing, which have all been developed to address the limitations in cloud computing. This paper reviews these recent technologies in detail and provides a comparative study of them. It also addresses the differences in these technologies and how each of them is effective for organizations and developers.


2016 ◽  
pp. 2221-2238
Author(s):  
Zhefu Shi ◽  
Cory Beard

Mobile Cloud Computing (MCC) integrates cloud computing into the mobile environment and overcomes obstacles related to performance (e.g., bandwidth, throughput) and environment (e.g., heterogeneity, scalability, and availability). Quality of Service (QoS), such as end-to-end delay, packet loss ratio, etc., is vital for MCC applications. In this chapter, several important approaches for performance evaluation in MCC are introduced. These approaches, such as Markov Processes, Scheduling, and Game Theory, are the most popular methodologies in current research about performance evaluation in MCC. QoS is special in MCC compared to other environments. Important QoS problems with details in MCC and corresponding designs and solutions are explained. This chapter covers the most important research problems and current status related to performance evaluation and QoS in MCC.


2016 ◽  
pp. 79-99
Author(s):  
Darshan M. Tank

With the development of cloud computing and mobility, mobile cloud computing has emerged and become a focus of research. Mobile Cloud Computing (MCC) integrates mobile computing and cloud computing aiming to extend mobile devices capabilities. By the means of on-demand self-service and extendibility, it can offer the infrastructure, platform, and software services in a cloud to mobile users through the mobile network. There is huge market for mobile based e-Commerce applications across the globe. Security and privacy are the key issues for mobile cloud computing applications. The limited processing power and memory of a mobile device dependent on inherently unreliable wireless channel for communication and battery for power leaves little scope for a reliable security layer. Thus there is a need for a lightweight secure framework that provides security with minimum communication and processing overhead on mobile devices. The security and privacy protection services can be achieved with the help of secure mobile-cloud application services.


2013 ◽  
Vol 837 ◽  
pp. 651-656
Author(s):  
Gabriel Raicu ◽  
Alexandra Raicu

The authors present the development of a scientific cloud computing environment (SCCE) for engineering and business simulations that offers high performance computation capability. The software platform consists of a scalable pool of virtual machines running a UNIX-like (Linux) or UNIX-derivative (FreeBSD) operating systems using specialised software based on modelling engineering processes and focused on business training and predictive analytics using simulations. The use of advanced engineering simulation technology allows engineers to understand and predict the future performance of complex structures and systems designs which can be optimized to reduce risk, improve performance or enhance survivability. A key component of cloud computing in Universities as well as in other research centers: they can share computing resources beyond their technical capabilities. With cloud computing, this allows them all to have access to large scales processing power based on KVM (Kernel based Virtual Machine). Our solution provides a more productive approach: a full scale virtualised computer with scalable storage space and instantly upgradable processing capability. It has more flexibility than other network computing systems and saves precious research time and money. Unlike the existing systems, the scientific community can receive support from a large number of specialists who may contribute by in a collaborative way.


Sign in / Sign up

Export Citation Format

Share Document