A Review of Emerging Contaminants in Water

Author(s):  
Alexandros I. Stefanakis ◽  
Julie A. Becker

Contaminants of emerging concern or, simply, emerging contaminants represent a newly discovered group of chemicals present in surface and groundwater. It was only the improvements in analytical instrumentation that allowed for the detection of these contaminants even at trace levels. The continuous detection of new chemicals with time raises questions concerning their source pathways, their fate, transport, transformations and impact on aquatic environments. The scope of this chapter is to present an overview of the contaminants classified as “emerging”, their sources and introduction pathways to the environment and the related risks to human health and aquatic life.

2020 ◽  
pp. 177-202
Author(s):  
Alexandros I. Stefanakis ◽  
Julie A. Becker

Contaminants of emerging concern or, simply, emerging contaminants represent a newly discovered group of chemicals present in surface and groundwater. It was only the improvements in analytical instrumentation that allowed for the detection of these contaminants even at trace levels. The continuous detection of new chemicals with time raises questions concerning their source pathways, their fate, transport, transformations and impact on aquatic environments. The scope of this chapter is to present an overview of the contaminants classified as “emerging”, their sources and introduction pathways to the environment and the related risks to human health and aquatic life.


2021 ◽  
Vol 18 ◽  
Author(s):  
Rahul Silori ◽  
Syed Mohammad Tauseef

: In recent years, pharmaceutical compounds have emerged as potential contaminants in the aquatic matrices of the environment. High production, consumption, and limited removal through conventional treatment processes/wastewater treatment plants (WWTPs) are the major causes for the occurrence of pharmaceutical compounds in wastewater and aquatic environments worldwide. A number of studies report adverse health effects and risks to aquatic life and the ecosystem because of the presence of pharmaceutical compounds in the aquatic environment. This paper provides a state-of-the-art review of the occurrence of pharmaceutical compounds in treated wastewater from various WWTPs, surface water and groundwater bodies. Additionally, this review provides comprehensive information and pointers for research in wastewater treatment and waterbodies management.


2018 ◽  
Vol 13 (1) ◽  
pp. 172-183 ◽  
Author(s):  
A. G. Capodaglio

Abstract Newly observed presence of ‘emerging contaminants’, defined also Compounds of Emerging Concern, chemicals without regulatory status and which impact on environment and human health are poorly understood has been amply reported in wastewater and aquatic environments. ‘Conventional’ water pollutants have been described for decades and their impact on human health and the environment are known; effective technologies for their removal are well established. This is not the case for most emerging contaminants: no effective removal technologies have been discovered to date, to simultaneously remove all of the concerned contaminants, even though some techniques have been demonstrated to remove some contaminants to a certain extent. Radiation processing using electron beam (EB) accelerators and gamma irradiators has shown promising results in many water-related applications. Radiation/EB processing is an additive-free process using short lived reactive species formed during radiolysis of water for decomposition of pollutants. Isolated studies have demonstrated the effectiveness of radiation, alone or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the removal or inactivation, of microorganisms and parasites. This review paper on this specific technology summarizes results of reported applications.


2010 ◽  
Vol 95 ◽  
pp. 33-36 ◽  
Author(s):  
Margarito Quintero-Núñez ◽  
Benjamin Valdez ◽  
Michael Schorr

There is a deep universal concern today about the influence of pollutants on the environment including soil, air and in particular water, and about their effects on the durability of engineering materials and the deterioration of structures and the infrastructure. Water pollutants affect the terrestrial, atmospheric and aquatic environments, and even when present at very low levels of a few ppm may impair human health, aquatic life and water quality. The avoidance of water pollution is, therefore, an important part of water resource management. The present work provides an overview of the effects of hydrogen sulfide (H2S) on corrosion in polluted waters, including sea, river, brackish, geothermal and sewage waters.


Environments ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 15 ◽  
Author(s):  
Diego Armando Casas-Beltran ◽  
Miguel Hernández-Pedraza ◽  
Jesús Alvarado-Flores

Tourist growth in Quintana Roo, Mexico has brought with it an increase of pollution by sunscreens to aquatic ecosystems, which represents an environmental risk because of the chemical components of sunscreens that can negatively affect human health and aquatic ecosystems. However, the magnitude of pollution in aquatic environments is unknown. Consequently, we sought to estimate the contamination by sunscreens based on usage and tourism statistics. Our estimate indicates that the water in Quintana Roo will receive nearly 4367.25 tons of chemicals from sunscreens used by residents and tourists over a period of 18 years (2007 to 2025). On average, each tourist stays in Quintana Roo for 3.45 days, and 89.9% of these visitors apply sunscreen, although only the 83.7% engage in water activities. Additionally, 30.4% of residents engage in water activities for an average of 1.5 days/year. We considered direct sunscreen contaminant contamination, which occurs from the application of sunscreen and subsequent water activities, as well as indirect contamination, which occurs when people wash their skin with drinking water that then enters the drainage system. Our analysis indicated that the greatest contribution of sunscreen to the karst aquifer of Quintana Roo, is direct. Chemicals dissolved in water are a danger to aquatic life and human health.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 215
Author(s):  
Nina Finčur ◽  
Paula Sfîrloagă ◽  
Predrag Putnik ◽  
Vesna Despotović ◽  
Marina Lazarević ◽  
...  

Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts were successfully prepared using a sol–gel method and characterized by different techniques (XRD, FTIR, UV/Vis, BET and SEM/EDX). The photocatalytic properties of TiO2, ZnO and MgO nanoparticles were examined according to their removal from water for two antibiotics (ciprofloxacin and ceftriaxone) and two herbicides (tembotrione and fluroxypyr) exposed to UV/simulated sunlight (SS). TiO2 proved to be the most efficient nanopowder under UV and SS. Addition of (NH4)2S2O8 led to the faster removal of both antibiotics and herbicide fluroxypyr. The main intermediates were separated and identified for the herbicides and antibiotic ciprofloxacin. Finally, the toxicity of each emerging pollutant mixture and formed intermediates was assessed on wheat germination and biomass production.


Proceedings ◽  
2019 ◽  
Vol 48 (1) ◽  
pp. 21
Author(s):  
Jinwoo Im ◽  
Calogero B. Rizzo ◽  
Felipe P. J. de Barros

With the growing concerns over emerging contaminants in indirect potable reuse (IPR) applications, we investigate the impact on human health risk of emerging contaminants introduced into groundwater. Some emerging contaminants have potential endocrine-related health effects at a specific exposure range that is much lower than current guidelines. We start by analyzing Bisphenol A (BPA), which is one of the frequently detected emerging contaminants in groundwater. The objective of this study is to understand how the non-trivial toxicity of BPA affects the estimation of human health risks and, consequentially, aquifer resilience. Based on our results, we aim to provide indications on how to improve water resources management in BPA contaminated sites. We use numerical methods to model BPA contamination of a three-dimensional aquifer, and human health risks and aquifer resilience are estimated at a control plane representing an environmentally sensitive target. A Monte Carlo simulation is conducted to compute uncertainty associated with two levels of heterogeneity. In order to evaluate health risks due to BPA, two types of Dose-Response (DR) models are considered: the monotonic DR model for general exposure and the non-monotonic DR model for prenatal/postnatal exposure. The aquifer resilience is defined as the capacity to recover the state where groundwater is considered potable (i.e., negligible health risks due to BPA). When using the non-monotonic DR model, computational results indicate that the aquifer resilience reduces and its uncertainty increases as the aquifer heterogeneity increases. On the other hand, the aquifer resilience considering the monotonic DR model enhances, and its uncertainty increases relatively smaller than the one considering the non-monotonic DR model. In addition, the variability of the aquifer resilience is controlled by the residence time of the BPA plumes at the control plane, which is related to the volumetric flow rate at the front side of the contamination source. Finally, the decision-making strategy for BPA contaminated sites should be established in accordance with the heterogeneous structure of aquifer and land uses that determines which DR model of BPA is more important in estimating the aquifer resilience.


2013 ◽  
Vol 14 (1) ◽  
pp. 72-79 ◽  

Nowadays, the scientific community has focused and prioritised research on “emerging pollutants”. The term “emerging pollutants” stands for the substances that are released in the environment for which currently no regulations are established for their environmental monitoring. Their occurrence is reported worldwide in a range of aquatic environments, such as lakes, rivers, freshwater catchments, estuaries, reservoirs and marine waters. Nevertheless, due to their large number (ranging in an order of thousands), only few of these compounds are toxicologically evaluated. Published data concerning occurrence and potential toxicological effects is limited. The contamination source of the aquatic environment is mainly the effluents from the sewage treatment plants (STPs). Reliable methods are available for residue analysis of these pollutants down to low ng L-1 levels. However, an urgent need is highlighted for the investigation (primarily in environmental media and following in biological ones) of the toxicity and transformation pathways of all emerging pollutants. The aims of this mini-review are to briefly present: (a) the major classes of emerging pollutants; (b) the reasons why these substances constitute an environmental issue; and (c) developments and applications of environmental analysis in this field.


Sign in / Sign up

Export Citation Format

Share Document