scholarly journals Emerging contaminants : a tutorial mini-review

2013 ◽  
Vol 14 (1) ◽  
pp. 72-79 ◽  

Nowadays, the scientific community has focused and prioritised research on “emerging pollutants”. The term “emerging pollutants” stands for the substances that are released in the environment for which currently no regulations are established for their environmental monitoring. Their occurrence is reported worldwide in a range of aquatic environments, such as lakes, rivers, freshwater catchments, estuaries, reservoirs and marine waters. Nevertheless, due to their large number (ranging in an order of thousands), only few of these compounds are toxicologically evaluated. Published data concerning occurrence and potential toxicological effects is limited. The contamination source of the aquatic environment is mainly the effluents from the sewage treatment plants (STPs). Reliable methods are available for residue analysis of these pollutants down to low ng L-1 levels. However, an urgent need is highlighted for the investigation (primarily in environmental media and following in biological ones) of the toxicity and transformation pathways of all emerging pollutants. The aims of this mini-review are to briefly present: (a) the major classes of emerging pollutants; (b) the reasons why these substances constitute an environmental issue; and (c) developments and applications of environmental analysis in this field.

2020 ◽  
Vol 55 (2) ◽  
pp. 128
Author(s):  
Angelica Nunes Garcia ◽  
Erika Mattos Stein ◽  
Leonardo Zambotti Villela ◽  
Nair S. Yokoya ◽  
Pio Colepicolo Neto ◽  
...  

Macroalgae are considered bioindicators for marine pollution, because they have the ability to quickly react to changes in their environment. In consequence, macroalgae populations fluctuate, according to species characteristics and adaptive strategies. Their cell wall polysaccharides contain sulfate groups that are capable of retaining and accumulating heavy metals. In addition to traditional contaminants, emerging pollutants are being recognized in aquatic environments. Herein, emerging pollutants have been identified after being desorbed from the macroalga Dichotomaria marginata, collected from Fortaleza Beach, Ubatuba, Brazil. Based on that algal polysaccharide networks have the potential of forming hydrogen bonds with polar compounds, it was hypothesized that these pollutants would be bound to sugar polymers. Compounds present in the D. marginata samples were identified using both gas and liquid chromatography/mass spectrometry (GC/MS and HPLC/MS), assisted by computational methods. It was possible to unequivocally identify 22 emerging contaminants with GC/MS, and 16 substances with HPLC/MS.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 215
Author(s):  
Nina Finčur ◽  
Paula Sfîrloagă ◽  
Predrag Putnik ◽  
Vesna Despotović ◽  
Marina Lazarević ◽  
...  

Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts were successfully prepared using a sol–gel method and characterized by different techniques (XRD, FTIR, UV/Vis, BET and SEM/EDX). The photocatalytic properties of TiO2, ZnO and MgO nanoparticles were examined according to their removal from water for two antibiotics (ciprofloxacin and ceftriaxone) and two herbicides (tembotrione and fluroxypyr) exposed to UV/simulated sunlight (SS). TiO2 proved to be the most efficient nanopowder under UV and SS. Addition of (NH4)2S2O8 led to the faster removal of both antibiotics and herbicide fluroxypyr. The main intermediates were separated and identified for the herbicides and antibiotic ciprofloxacin. Finally, the toxicity of each emerging pollutant mixture and formed intermediates was assessed on wheat germination and biomass production.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
C. Remédios ◽  
F. Rosário ◽  
V. Bastos

Nanoparticles (NPs) are characterized by their small size (less than 100 nm) and large surface area, which confer specific physicochemical properties as strength, electrical, and optical features. NPs can be derived from natural or anthropic sources, such as engineered or unwanted/incidental NPs. The composition, dimension, and morphology of engineered NPs enable their use in a variety of areas, such as electronic, biomedical, pharmaceutical, cosmetic, energy, environmental, catalysis, and materials science. As nanotechnology is an innovative and scientific growth area with an exponential production, more information is needed concerning the impacts of these nanomaterials (NMs) in the environment and, particularly, in animals/humans health and in plants performance. So, research on NPs as emerging contaminants is therefore a new field in environmental health. This minireview describes, briefly, the NPs characterization and their occurrence in the environment stating air, water, and soil. Finally, particular emphasis is given to the interaction of NPs with plants at different levels: morphology, physiology, and genotoxicity. By analyzing this compiled information, it is evident that research on NPs phytotoxicity is in the beginning, and more comprehensive studies are needed not only on NPs cytotoxicity and genotoxicity but also on the best and the most reliable methods of assessing NPs toxicity.


2020 ◽  
pp. 177-202
Author(s):  
Alexandros I. Stefanakis ◽  
Julie A. Becker

Contaminants of emerging concern or, simply, emerging contaminants represent a newly discovered group of chemicals present in surface and groundwater. It was only the improvements in analytical instrumentation that allowed for the detection of these contaminants even at trace levels. The continuous detection of new chemicals with time raises questions concerning their source pathways, their fate, transport, transformations and impact on aquatic environments. The scope of this chapter is to present an overview of the contaminants classified as “emerging”, their sources and introduction pathways to the environment and the related risks to human health and aquatic life.


Author(s):  
Alexandros I. Stefanakis ◽  
Julie A. Becker

Contaminants of emerging concern or, simply, emerging contaminants represent a newly discovered group of chemicals present in surface and groundwater. It was only the improvements in analytical instrumentation that allowed for the detection of these contaminants even at trace levels. The continuous detection of new chemicals with time raises questions concerning their source pathways, their fate, transport, transformations and impact on aquatic environments. The scope of this chapter is to present an overview of the contaminants classified as “emerging”, their sources and introduction pathways to the environment and the related risks to human health and aquatic life.


2018 ◽  
Vol 26 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Carlos Lodeiro ◽  
José Luis Capelo ◽  
Elisabete Oliveira ◽  
Javier Fernández Lodeiro

2002 ◽  
Vol 46 (11-12) ◽  
pp. 437-442 ◽  
Author(s):  
H. Shimazu ◽  
E. Ohnishi ◽  
N. Ozaki ◽  
T. Fukushima ◽  
O. Nakasugi

In order to investigate the characteristics of sediment-water partition of chemicals in aquatic environments using published data, we developed a model for predicting the sediment-water partition coefficient (Kp) as the sum of sorption to sediment organic matter and sorption to sediment inorganic matter. This model is so successful that the differences between Kp (median for a variety of Japanese water bodies) and pre-Kp (predicted Kp) are within one order of magnitude in 24 out of 28 chemicals.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Nadja R. Brun ◽  
Patrick van Hage ◽  
Ellard R. Hunting ◽  
Anna-Pavlina G. Haramis ◽  
Suzanne C. Vink ◽  
...  

Abstract Plastic nanoparticles originating from weathering plastic waste are emerging contaminants in aquatic environments, with unknown modes of action in aquatic organisms. Recent studies suggest that internalised nanoplastics may disrupt processes related to energy metabolism. Such disruption can be crucial for organisms during development and may ultimately lead to changes in behaviour. Here, we investigated the link between polystyrene nanoplastic (PSNP)-induced signalling events and behavioural changes. Larval zebrafish exhibited PSNP accumulation in the pancreas, which coincided with a decreased glucose level. By using hyperglycemic and glucocorticoid receptor (Gr) mutant larvae, we demonstrate that the PSNP-induced disruption in glucose homoeostasis coincided with increased cortisol secretion and hyperactivity in challenge phases. Our work sheds new light on a potential mechanism underlying nanoplastics toxicity in fish, suggesting that the adverse effect of PSNPs are at least in part mediated by Gr activation in response to disrupted glucose homeostasis, ultimately leading to aberrant locomotor activity.


2004 ◽  
Vol 70 (6) ◽  
pp. 3535-3540 ◽  
Author(s):  
Cristina Garc�a-Aljaro ◽  
Maite Muniesa ◽  
Juan Jofre ◽  
Anicet R. Blanch

ABSTRACT Shiga toxin-producing Escherichia coli strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. The major virulence factors of these strains are Shiga toxins Stx1 and Stx2. The majority of the genes coding for these toxins are borne by bacteriophages. Free Stx2-encoding bacteriophages have been found in aquatic environments, but there is limited information about the lysogenic strains and bacteria present in the environment that are susceptible to phage infection. The aim of this work was to study the prevalence and the distribution of the stx 2 gene in coliform bacteria in sewage samples of different origins. The presence of the stx 2 gene was monitored every 2 weeks over a 1-year period in a municipal sewage treatment plant. A mean value of 102 genes/ml was observed without significant variation during the study period. This concentration was of the same order of magnitude in raw municipal sewage of various origins and in animal wastewater from several slaughterhouses. A total of 138 strains carrying the stx 2 gene were isolated by colony hybridization. This procedure detected approximately 1 gene-carrying colony per 1,000 fecal coliform colonies in municipal sewage and around 1 gene-carrying colony per 100 fecal coliform colonies in animal wastewaters. Most of the isolates belonged to E. coli serotypes other than E. coli O157, suggesting a low prevalence of strains of this serotype carrying the stx 2 gene in the wastewater studied.


Sign in / Sign up

Export Citation Format

Share Document