Energy Efficient Congestion Control in Wireless Sensor Networks

Author(s):  
Awais Ahmad ◽  
Anand Paul ◽  
Sohail Jabbar ◽  
Seungmin Rho

Avoiding from congestion and provision of reliable communication characterising the low energy consumption and high data rate is one of the momentous challenges at Media Access Control (MAC) layer. This become more difficult to achieve when there is energy constraint mixed with mobility of nodes. Same issue is addressed in this underlying paper. Here we have proposed a Time-Sharing Energy Efficient Congestion Control (TSEEC) technique for Mobile Wireless Sensor Networks. Time Division Multiple Access Protocol (TDMA) and Statistical Time Division Multiple Access Protocol (STDMA) are major constituents of this technique. These helps in conserving the energy by controlling the sleeping, waking up and listening states of sensor nodes. Load Based Allocation and Time Allocation Leister techniques further helps in conserving the network energy minimizing the network congestion. First mentioned technique is designed on the basis of STDMA Protocol and uses the sensor node information to dynamically assign the time slots while later said technique is does the job of mobility management of sensor node. This Time Allocation Leister techniques further comprises of Extricated Time Allocation (ETA), Shift Back Time Allocation (SBTA), and eScaped Time Allocation (STA) sub techniques for managing the joing and leaving of nodes to cluster and redundant\absence of data for communication respectively. To control the movement of mobile sensor nodes, we have also introduced mobility pattern as part of TSEEC that helps in making the protocol adaptive to traffic environment and to mobility as well. A comparitive analysis of proposed mechanism with SMAC is performed in NS2 along with mathematical anslysis by considering energy consumption, and packet deliver ratio as performance evaluation parameters. The results for the former outperforms to that of later. Moreover, comparative analysis of the proposed TSEEC with other MAC protocols is also presented.

2020 ◽  
pp. 780-799
Author(s):  
Awais Ahmad ◽  
Anand Paul ◽  
Sohail Jabbar ◽  
Seungmin Rho

Avoiding from congestion and provision of reliable communication characterising the low energy consumption and high data rate is one of the momentous challenges at Media Access Control (MAC) layer. This become more difficult to achieve when there is energy constraint mixed with mobility of nodes. Same issue is addressed in this underlying paper. Here we have proposed a Time-Sharing Energy Efficient Congestion Control (TSEEC) technique for Mobile Wireless Sensor Networks. Time Division Multiple Access Protocol (TDMA) and Statistical Time Division Multiple Access Protocol (STDMA) are major constituents of this technique. These helps in conserving the energy by controlling the sleeping, waking up and listening states of sensor nodes. Load Based Allocation and Time Allocation Leister techniques further helps in conserving the network energy minimizing the network congestion. First mentioned technique is designed on the basis of STDMA Protocol and uses the sensor node information to dynamically assign the time slots while later said technique is does the job of mobility management of sensor node. This Time Allocation Leister techniques further comprises of Extricated Time Allocation (ETA), Shift Back Time Allocation (SBTA), and eScaped Time Allocation (STA) sub techniques for managing the joing and leaving of nodes to cluster and redundant\absence of data for communication respectively. To control the movement of mobile sensor nodes, we have also introduced mobility pattern as part of TSEEC that helps in making the protocol adaptive to traffic environment and to mobility as well. A comparitive analysis of proposed mechanism with SMAC is performed in NS2 along with mathematical anslysis by considering energy consumption, and packet deliver ratio as performance evaluation parameters. The results for the former outperforms to that of later. Moreover, comparative analysis of the proposed TSEEC with other MAC protocols is also presented.


Author(s):  
Ajay Kaushik ◽  
S. Indu ◽  
Daya Gupta

Wireless sensor networks (WSNs) are becoming increasingly popular due to their applications in a wide variety of areas. Sensor nodes in a WSN are battery operated which outlines the need of some novel protocols that allows the limited sensor node battery to be used in an efficient way. The authors propose the use of nature-inspired algorithms to achieve energy efficient and long-lasting WSN. Multiple nature-inspired techniques like BBO, EBBO, and PSO are proposed in this chapter to minimize the energy consumption in a WSN. A large amount of data is generated from WSNs in the form of sensed information which encourage the use of big data tools in WSN domain. WSN and big data are closely connected since the large amount of data emerging from sensors can only be handled using big data tools. The authors describe how the big data can be framed as an optimization problem and the optimization problem can be effectively solved using nature-inspired algorithms.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


2019 ◽  
Vol 11 (21) ◽  
pp. 6171 ◽  
Author(s):  
Jangsik Bae ◽  
Meonghun Lee ◽  
Changsun Shin

With the expansion of smart agriculture, wireless sensor networks are being increasingly applied. These networks collect environmental information, such as temperature, humidity, and CO2 rates. However, if a faulty sensor node operates continuously in the network, unnecessary data transmission adversely impacts the network. Accordingly, a data-based fault-detection algorithm was implemented in this study to analyze data of sensor nodes and determine faults, to prevent the corresponding nodes from transmitting data; thus, minimizing damage to the network. A cloud-based “farm as a service” optimized for smart farms was implemented as an example, and resource management of sensors and actuators was provided using the oneM2M common platform. The effectiveness of the proposed fault-detection model was verified on an integrated management platform based on the Internet of Things by collecting and analyzing data. The results confirm that when a faulty sensor node is not separated from the network, unnecessary data transmission of other sensor nodes occurs due to continuous abnormal data transmission; thus, increasing energy consumption and reducing the network lifetime.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mingxin Yang ◽  
Jingsha He ◽  
Yuqiang Zhang

Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


2020 ◽  
Author(s):  
Ademola Abidoye ◽  
Boniface Kabaso

Abstract Wireless sensor networks (WSNs) have been recognized as one of the most essential technologies of the 21st century. The applications of WSNs are rapidly increasing in almost every sector because they can be deployed in areas where cable and power supply are difficult to use. In the literature, different methods have been proposed to minimize energy consumption of sensor nodes so as to prolong WSNs utilization. In this article, we propose an efficient routing protocol for data transmission in WSNs; it is called Energy-Efficient Hierarchical routing protocol for wireless sensor networks based on Fog Computing (EEHFC). Fog computing is integrated into the proposed scheme due to its capability to optimize the limited power source of WSNs and its ability to scale up to the requirements of the Internet of Things applications. In addition, we propose an improved ant colony optimization (ACO) algorithm that can be used to construct optimal path for efficient data transmission for sensor nodes. The performance of the proposed scheme is evaluated in comparison with P-SEP, EDCF, and RABACO schemes. The results of the simulations show that the proposed approach can minimize sensor nodes’ energy consumption, data packet losses and extends the network lifetime


Sensor nodes are exceedingly energy compelled instrument, since it is battery operated instruments. In wsn network, every node is liable to the data transmission through the wireless mode [1]. Wireless sensor networks (WSN) is made of a huge no. of small nodes with confined functionality. The essential theme of the wireless sensor network is energy helpless and the WSN is collection of sensor. Every sensor terminal is liable to sensing, store and information clan and send it forwards into sink. The communication within the node is done via wireless network [3].Energy efficiency is the main concentration of a desining the better routing protocol. LEACH is a protocol. This is appropriate for short range network, since imagine that whole sensor node is capable of communication with inter alia and efficient to access sink node, which is not always correct for a big network. Hence, coverage is a problem which we attempt to resolve [6]. The main focus within wireless sensor networks is to increase the network life-time span as much as possible, so that resources can be utilizes efficiently and optimally. Various approaches which are based on the clustering are very much optimal in functionality. Life-time of the network is always connected with sensor node’s energy implemented at distant regions for stable and defect bearable observation [10].


Sign in / Sign up

Export Citation Format

Share Document