Fundamental, Fabrication and Applications of Superhydrophobic Surfaces

Author(s):  
Adel M Mohamed ◽  
Aboubakr Moustafa Abdullah ◽  
Mariam Al-Maadeed ◽  
Ahmed Bahgat

The need to create new enhanced corrosion resistant coatings has grown because of the financial burden corrosion places on certain industries such as oil industry. Organic inhibitors have been extensively reported to protect metals and metallic alloys from corrosion although they have a negative impact on environment. Development of better corrosion resistant coatings such as metal alloys, metal-ceramics, polymers, and hydrophobic films are examples of corrosion resistant coatings for metals and alloys. Recently, superhydrophobic coatings have been widely implemented into many fields including anti-fogging transparent materials, self-cleaning surfaces, biomedical and corrosion applications. In the proposed chapter, a comprehensive review will be dedicated for the fundamentals and developments of superhydrophobic materials including theoretical background; superhydrophobicity in nature; preparation techniques; and recent attempts to develop superhydrophobic surfaces.

2018 ◽  
Vol 36 (2) ◽  
pp. 127-153 ◽  
Author(s):  
Ahmed Bahgat Radwan ◽  
Aboubakr M. Abdullah ◽  
Nasser A. Alnuaimi

AbstractExtreme water-repellent (superhydrophobic) coatings with water contact angle higher than 150° have caught the attention of corrosion researchers in the last decade as they can be used to protect metals and alloys against corrosion. The latter is a serious problem, as it can threaten human lives in addition to its deleterious effects on the economy and environment. Superhydrophobic coatings (SHCs) can be achieved by lowering the surface energy of a certain coating through combining some of its surface features at the microscale and nanoscales. Although SHCs can be prepared using many different easy techniques, none, to the best of our knowledge, has been applied, so far, on an industrial scale for protection against corrosion of metals and alloys. The present work explains the different models of superhydrophobic surfaces (SHSs) and reviews their fabrication and processing methods with a focus on the recent advances in the corrosion protection of the SHC.


2019 ◽  
pp. 110-114
Author(s):  
D. A. Gerashchenkov ◽  
T. I. Bobkova ◽  
A. F. Vasiliev ◽  
P. A. Kuznetsov ◽  
E. A. Samodelkin ◽  
...  

A composition of a precision alloy based on the Ni–Cr–Mo system for wear and corrosion-resistant coatings by supersonic cold gas dynamic spraying has been developed. The optimum coatings composition provides high level of operational properties; its application is very promising for protection of structural and functional elements of marine equipment from aggressive environmental influence.


Langmuir ◽  
2018 ◽  
Vol 34 (24) ◽  
pp. 7059-7066 ◽  
Author(s):  
Ludmila B. Boinovich ◽  
Kirill A. Emelyanenko ◽  
Alexander G. Domantovsky ◽  
Alexandre M. Emelyanenko

2010 ◽  
Vol 22 (21) ◽  
pp. n/a-n/a ◽  
Author(s):  
Wilhelm Barthlott ◽  
Thomas Schimmel ◽  
Sabine Wiersch ◽  
Kerstin Koch ◽  
Martin Brede ◽  
...  

2011 ◽  
Vol 695 ◽  
pp. 417-420 ◽  
Author(s):  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Bhupendra Joshi ◽  
Soo Wohn Lee

Oxide ceramics such as alumina and zirconia are industrially utilized as cutting tools, a variety of bearings, biomaterials, and thermal and corrosion-resistant coatings due to their high hardness, chemical inertness, high melting point, and ability to retain mechanical strength at elevated temperatures. In this research, the effect of other ceramic additives (TiO2) and h-BN within alumina(α-Al2O3) and yttria-stabilized tetragonal (Y-TZP) composite was studied with respect to the mechanical and tribological properties. The lowest coefficient of frction of 0.45 was observed for the ZTA ceramic composite with hBN-TiO2. The highest hardness, fracture toughness and flexural strength were obtained as 15.7GPa, 5.2MPam-1/2, 712MPa, respectively.


2021 ◽  
Vol MA2021-02 (37) ◽  
pp. 1112-1112
Author(s):  
Ton Hurkmans ◽  
Frank Schuivens ◽  
Joris Ummels ◽  
Gerry van der Kolk ◽  
Roel Bosch

2021 ◽  
pp. 1-34
Author(s):  
Peter Renner ◽  
Swarn Jha ◽  
Yan Chen ◽  
Tariq Chagouri ◽  
Serge Kazadi ◽  
...  

Abstract Effective design of corrosion-resistant coatings is critical for the protection of metals and alloys. Many state-of-the-art corrosion-resistant coatings are unable to satisfy the challenges in extreme environments for tribological applications, such as elevated or cryogenic temperatures, high mechanical loads and impacts, severe wear, chemical attack, or a combination of these. The nature of challenging conditions demands that coatings have high corrosion and wear resistance, sustained friction control, and maintain surface integrity. In this research, multi-performance metal-ceramic composite coatings were developed for applications in harsh environments. These coatings were developed with an easy to fabricate, low-cost, and safe procedure. The coating consisted of boron nitride, graphite, silicon carbide, and transition metals such as chromium or nickel using epoxy as vehicle and bonding agent. Salt spray corrosion tests showed that 1010 carbon steel (1/4 hard temper) substrates lost 20-100× more mass than the coatings. The potentiodynamic polarization study showed better performance of the coatings by seven orders of magnitude in terms of corrosion relative to the substrate. Additionally, the corrosion rates of the coatings with Ni as an additive were five orders of magnitude lower than reported. The coefficient of friction of coatings was as low as 0.1, five to six times lower than that of epoxy and lower than a wide range of epoxy resin-based coatings found in literature. Coatings developed here exhibited potential in applications in challenging environments for tribological applications.


Sign in / Sign up

Export Citation Format

Share Document