WiFi Fingerprint Localization for Emergency Response
As a key enabler for diversified location-based services (LBSs) of pervasive computing, indoor WiFi fingerprint localization remains a hot topic for decades. For most of previous research, maintaining a stable Radio Frequency (RF) environment constitutes one implicit but basic assumption. However, there is little room for such assumption in real-world scenarios, especially for the emergency response. Therefore, we propose a novel solution (HED) for rapidly setting up an indoor localization system by harvesting from the bursting number of available wireless resources. Via extensive real-world experiments lasting for over 6 months, we show the superiority of our HED algorithm in terms of accuracy, complexity and stability over two state-of-the-art solutions that are also designed to resist the dynamics, i.e., FreeLoc and LCS (Longest Common Subsequences). Moreover, experimental results not only confirm the benefits brought by environmental dynamics, but also provide valuable investigations and hand-on experiences on the real-world localization system.