WiFi Fingerprint Localization for Emergency Response

Author(s):  
Yu Gu ◽  
Min Peng ◽  
Fuji Ren ◽  
Jie Li

As a key enabler for diversified location-based services (LBSs) of pervasive computing, indoor WiFi fingerprint localization remains a hot topic for decades. For most of previous research, maintaining a stable Radio Frequency (RF) environment constitutes one implicit but basic assumption. However, there is little room for such assumption in real-world scenarios, especially for the emergency response. Therefore, we propose a novel solution (HED) for rapidly setting up an indoor localization system by harvesting from the bursting number of available wireless resources. Via extensive real-world experiments lasting for over 6 months, we show the superiority of our HED algorithm in terms of accuracy, complexity and stability over two state-of-the-art solutions that are also designed to resist the dynamics, i.e., FreeLoc and LCS (Longest Common Subsequences). Moreover, experimental results not only confirm the benefits brought by environmental dynamics, but also provide valuable investigations and hand-on experiences on the real-world localization system.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 574
Author(s):  
Chendong Xu ◽  
Weigang Wang ◽  
Yunwei Zhang ◽  
Jie Qin ◽  
Shujuan Yu ◽  
...  

With the increasing demand of location-based services, neural network (NN)-based intelligent indoor localization has attracted great interest due to its high localization accuracy. However, deep NNs are usually affected by degradation and gradient vanishing. To fill this gap, we propose a novel indoor localization system, including denoising NN and residual network (ResNet), to predict the location of moving object by the channel state information (CSI). In the ResNet, to prevent overfitting, we replace all the residual blocks by the stochastic residual blocks. Specially, we explore the long-range stochastic shortcut connection (LRSSC) to solve the degradation problem and gradient vanishing. To obtain a large receptive field without losing information, we leverage the dilated convolution at the rear of the ResNet. Experimental results are presented to confirm that our system outperforms state-of-the-art methods in a representative indoor environment.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65 ◽  
Author(s):  
Stefania Monica ◽  
Federico Bergenti

The study of techniques to estimate the position of mobile devices with a high level of accuracy and robustness is essential to provide advanced location based services in indoor environments. An algorithm to enable mobile devices to estimate their positions in known indoor environments is proposed in this paper under the assumption that fixed anchor nodes are available at known locations. The proposed algorithm is specifically designed to be executed on the mobile device whose position is under investigation, and it allows the device to estimate its position within the environment by actively measuring distance estimates from the anchor nodes. In order to reduce the impact of the errors caused by the arrangement of the anchor nodes in the environment, the proposed algorithm first transforms the localization problem into an optimization problem, and then, it solves the derived optimization problem using techniques inspired by nonlinear programming. Experimental results obtained using ultra-wide band signaling are presented to assess the performance of the algorithm and to compare it with reference alternatives. The presented experimental results confirm that the proposed algorithm provides an increased level of accuracy and robustness with respect to two reference alternatives, regardless of the position of the anchor nodes.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877128 ◽  
Author(s):  
Jinkai Liu ◽  
Yanqing Qiu ◽  
Kezhao Yin ◽  
Wentong Dong ◽  
Jiaqing Luo

The radio frequency identification technology was given greater interest as it is widely used for identification and localization in the cognitive radio sensor networks. While radio frequency identification–based indoor localization is attractive, the need for a large-scale and high-density deployment of readers and reference tags is costly. Using mobile readers mounted on guide rails, we design and implement an RFID indoor localization system, which requires neither reference tags nor received signal strength indicator functions, for stock-taking and searching in warehouse operations. In particular, we install two guide rails, which can allow a reader to move horizontally or vertically, on the ceiling of a warehouse or workshop. We then propose a continuous scanning algorithm to improve the accuracy for locating a single tagged object and a category-based scheduling algorithm to shorten the time for locating multiple tagged objects. Our primary experimental results show that RFID indoor localization system can achieve high time efficiency and localization accuracy in the indoor localization.


2014 ◽  
Vol 701-702 ◽  
pp. 989-993
Author(s):  
Wen Bin Yu ◽  
Peng Li ◽  
Zhi Chen ◽  
Chang Li

Recently, indoor localization is essential to enable location-based services for many mobile and social network applications. Due to fluctuation of the wireless signal, the accuracy of a simple WiFi fingerprint-based localization is not high. In this paper, we first exploit Pedestrian Dead Reckoning (PDR) technology to overcome the problem of the wireless signal fluctuation, then propose a PDR-aided algorithm with WiFi fingerprint matching for indoor localization, which using the PDR technology aided indoor localization. Experiments show that our algorithm has better accuracy than other indoor localization methods.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


Author(s):  
Weijia Zhang

Multi-instance learning is a type of weakly supervised learning. It deals with tasks where the data is a set of bags and each bag is a set of instances. Only the bag labels are observed whereas the labels for the instances are unknown. An important advantage of multi-instance learning is that by representing objects as a bag of instances, it is able to preserve the inherent dependencies among parts of the objects. Unfortunately, most existing algorithms assume all instances to be identically and independently distributed, which violates real-world scenarios since the instances within a bag are rarely independent. In this work, we propose the Multi-Instance Variational Autoencoder (MIVAE) algorithm which explicitly models the dependencies among the instances for predicting both bag labels and instance labels. Experimental results on several multi-instance benchmarks and end-to-end medical imaging datasets demonstrate that MIVAE performs better than state-of-the-art algorithms for both instance label and bag label prediction tasks.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 334 ◽  
Author(s):  
Stefania Monica ◽  
Federico Bergenti

The interest in indoor localization has been increasing in the last few years because of the numerous important applications related to the pervasive diffusion of mobile smart devices that could benefit from localization. Various wireless technologies are in use to perform indoor localization, and, among them, WiFi and UWB technologies are appreciated when robust and accurate localization is required. The major advantage of WiFi technology is that it is ubiquitous, and therefore it can be used to support localization without the introduction of a specific infrastructure. The major drawback of WiFi technology is that it does not often ensure sufficient accuracy. On the contrary, indoor localization based on UWB technology guarantees higher accuracy with increased robustness, but it requires the use of UWB-enabled devices and the deployment of specific infrastructures made of UWB beacons. Experimental results on the synergic use of WiFi and UWB technologies for localization are presented in this paper to show that hybrid approaches can be used to effectively to increase the accuracy of WiFi-based localization. Actually, presented experimental results show that the use of a small number of UWB beacons together with an ordinary WiFi infrastructure is sufficient to significantly increase the accuracy of localization and to make WiFi-based localization adequate to implement relevant location-based services and applications.


Author(s):  
Liang Yang ◽  
Yuanfang Guo ◽  
Di Jin ◽  
Huazhu Fu ◽  
Xiaochun Cao

Combinational  network embedding, which learns the node representation by exploring both  topological and non-topological information, becomes popular due to the fact that the two types of information are complementing each other.  Most of the existing methods either consider the  topological and non-topological  information being aligned or possess predetermined preferences during the embedding process.Unfortunately, previous methods  fail to either explicitly describe the correlations between topological and non-topological information or adaptively weight their impacts. To address the existing issues, three new assumptions are proposed to better describe the embedding space and its properties. With the proposed assumptions, nodes, communities and topics are mapped into one embedding space. A novel generative model is proposed to formulate the generation process of the network and content from the embeddings, with respect to the Bayesian framework. The proposed model automatically leans to the information which is more discriminative.The embedding result can be obtained by maximizing the posterior distribution by adopting the variational inference and reparameterization trick. Experimental results indicate that the proposed method gives superior performances compared to the state-of-the-art methods when a variety of real-world networks is analyzed.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550003 ◽  
Author(s):  
Armin Daneshpazhouh ◽  
Ashkan Sami

The task of semi-supervised outlier detection is to find the instances that are exceptional from other data, using some labeled examples. In many applications such as fraud detection and intrusion detection, this issue becomes more important. Most existing techniques are unsupervised. On the other hand, semi-supervised approaches use both negative and positive instances to detect outliers. However, in many real world applications, very few positive labeled examples are available. This paper proposes an innovative approach to address this problem. The proposed method works as follows. First, some reliable negative instances are extracted by a kNN-based algorithm. Afterwards, fuzzy clustering using both negative and positive examples is utilized to detect outliers. Experimental results on real data sets demonstrate that the proposed approach outperforms the previous unsupervised state-of-the-art methods in detecting outliers.


Sign in / Sign up

Export Citation Format

Share Document