Metaheuristic Approaches for Extrusion Manufacturing Process

Author(s):  
Pauline Ong ◽  
Desmond Daniel Vui Sheng Chin ◽  
Choon Sin Ho ◽  
Chuan Huat Ng

Optimization, basically, is a method used to find solutions for a particular problem without neglecting the existing boundaries or limitations. Flower Pollination Algorithm (FPA) is one of the recently developed nature inspired algorithms, based on the intriguing process of flower pollination in the world of nature. The main aim of this study is to utilize FPA in optimizing cold forward extrusion process in order to obtain optimal parameters to produce workpiece with the minimum force load. It is very important to find the most optimal parameters for an extrusion process in order to prevent waste from happening due to trial and error method in determining the optimal parameters and thus, FPA is used to replace the traditional trial and error method to optimize the cold forward extrusion process. The optimization performance of the FPA is then compared with the particle swarm optimization (PSO), in which the FPA shows comparable performance in this regard.

2009 ◽  
Vol 424 ◽  
pp. 197-204 ◽  
Author(s):  
W. Assaad ◽  
H.J.M. Geijselaers ◽  
K.E. Nilsen

The design of extrusion dies depends on the experience of the designer. After the die has been manufactured, it is tested during an extrusion process and machined several times until it works properly. The die is designed by a trial and error method which is expensive interms of time consumption and the amount of scrap. Research is going on to replace the trial pressing with finite element simulations that concentrate on material and tool analysis. In order to validate the tool simulations, an experiment is required for measuring the deformation of the die. Measuring the deformation of the die is faced with two main obstacles: high temperature and little free space. To overcome these obstacles a method is tried, which works by applying a laser beam on a reflecting surface. This cheap method is simple, robust and gives good results. This paper describes measuring the deformation of a flat die used to extrude a single U shape profile. In addition, finite element calculation of the die is performed. Finally, a comparison is performed between experimental and numerical results.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 317 ◽  
Author(s):  
Yongliang Chen ◽  
Wei Wu ◽  
Qingying Zhao

One-class support vector machine (OCSVM) is an efficient data-driven mineral prospectivity mapping model. Since the parameters of OCSVM directly affect the performance of the model, it is necessary to optimize the parameters of OCSVM in mineral prospectivity mapping. Trial and error method is usually used to determine the “optimal” parameters of OCSVM. However, it is difficult to find the globally optimal parameters by the trial and error method. By combining OCSVM with the bat algorithm, the intialization parameters of the OCSVM can be automatically optimized. The combined model is called bat-optimized OCSVM. In this model, the area under the curve (AUC) of OCSVM is taken as the fitness value of the objective function optimized by the bat algorithm, the value ranges of the initialization parameters of OCSVM are used to specify the search space of bat population, and the optimal parameters of OCSVM are automatically determined through the iterative search process of the bat algorithm. The bat-optimized OCSVMs were used to map mineral prospectivity of the Helong district, Jilin Province, China, and compared with the OCSVM initialized by the default parameters (i.e., common OCSVM) and the OCSVM optimized by trial and error. The results show that (a) the receiver operating characteristic (ROC) curve of the trial and error-optimized OCSVM is intersected with those of the bat-optimized OCSVMs and (b) the ROC curves of the optimized OCSVMs slightly dominate that of the common OCSVM in the ROC space. The area under the curves (AUCs) of the common and trial and error-optimized OCSVMs (0.8268 and 0.8566) are smaller than those of the bat-optimized ones (0.8649 and 0.8644). The optimal threshold for extracting mineral targets was determined by using the Youden index. The mineral targets predicted by the common and trial and error-optimized OCSVMs account for 29.61% and 18.66% of the study area respectively, and contain 93% and 86% of the known mineral deposits. The mineral targets predicted by the bat-optimized OCSVMs account for 19.84% and 14.22% of the study area respectively, and also contain 93% and 86% of the known mineral deposits. Therefore, we have 0.93/0.2961 = 3.1408 < 0.86/0.1866 = 4.6088 < 0.93/0.1984 = 4.6875 < 0.86/0.1422 = 6.0478, indicating that the bat-optimized OCSVMs perform slightly better than the common and trial and error-optimized OCSVMs in mineral prospectivity mapping.


Author(s):  
Lidiya Derbenyova

The article focuses on the problems of translation in the field of hermeneutics, understood as a methodology in the activity of an interpreter, the doctrine of the interpretation of texts, as a component of the transmission of information in a communicative aspect. The relevance of the study is caused by the special attention of modern linguistics to the under-researched issues of hermeneutics related to the problems of transmission of foreign language text semantics in translation. The process of translation in the aspect of hermeneutics is regarded as the optimum search and decision-making process, which corresponds to a specific set of functional criteria of translation, which can take many divergent forms. The translator carries out a number of specific translation activities: the choice of linguistic means and means of expression in the translation language, replacement and compensation of nonequivalent units. The search for the optimal solution itself is carried out using the “trial and error” method. The translator always acts as an interpreter. Within the boundaries of a individual utterance, it must be mentally reconstructed as conceptual situations, the mentally linguistic actions of the author, which are verbalized in this text.


Author(s):  
H. J. Godwin

The determination of a pair of fundamental units in a totally real cubic field involves two operations—finding a pair of independent units (i.e. such that neither is a power of the other) and from these a pair of fundamental units (i.e. a pair ε1; ε2 such that every unit of the field is of the form with rational integral m, n). The first operation may be accomplished by exploring regions of the integral lattice in which two conjugates are small or else by factorizing small primes and comparing different factorizations—a trial-and-error method, but often a quick one. The second operation is accomplished by obtaining inequalities which must be satisfied by a fundamental unit and its conjugates and finding whether or not a unit exists satisfying these inequalities. Recently Billevitch ((1), (2)) has given a method, of the nature of an extension of the first method mentioned above, which involves less work on the second operation but no less on the first.


2016 ◽  
Vol 4 (29) ◽  
pp. 11446-11452 ◽  
Author(s):  
Zhonglu Guo ◽  
Jian Zhou ◽  
Linggang Zhu ◽  
Zhimei Sun

Identifying suitable photocatalysts for photocatalytic water splitting to produce hydrogen fuelviasunlight is an arduous task by the traditional trial-and-error method.


1969 ◽  
Vol 23 (2) ◽  
pp. 128-132 ◽  
Author(s):  
E. Alexander ◽  
B. S. Fraenkel

A routine method to adjust a grazing incidence spectrometer for maximum resolution is described. The trial and error method uses as variable, the distance of the slit from the Rowland circle. Examples of resolved doublets are shown.


2021 ◽  
Author(s):  
Prantik Dutta ◽  
Arun Gande ◽  
Gopi Ram

In this letter, a non-reciprocal filter with enhanced directivity is analyzed methodically and the filter parameters are optimized using an evolutionary algorithm. The return loss, insertion loss, and isolation characteristics of the filter exhibit a trade-off that makes manual tuning a trial-and-error method. The veracity of the numerical modeling is conformed by designing a 150 MHz lumped element non-reciprocal bandpass filter based on the parameters extracted using an evolutionary algorithm based particle swarm optimization (PSO). The simulated and measured results comply well with the modeling and the results exhibit maximum directivity of 28.2 dB without degradation in insertion loss (1.1 dB) and return loss (16.2 dB) within the passband. The algorithm can be utilized in designing non-reciprocal filters having different center frequencies and bandwidths.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-68
Author(s):  
N. N. A. Rahman ◽  
N. M. Yahya

Mathematical model has been proposed for some system that involves a brushed DC motor and it is widely used in industry. Brushed DC motor ideals for applications with a low- torque, manage to change pace or speed and it is widely used in many applications such as x-y table positioning system, conveyor systems and other system that required to use the features that brushed DC motor have. Mathematical model of brushed DC motor in order to verify the performance of the DC motor. In this paper, mathematical model of brushed DC motor will be derived from a brushed DC motor circuit that consist of two parts that are electrical and mechanical part. To validate the functionality of mathematical model, the performance of the brushed DC motor without any controller will be compared with the brushed DC motor with the presence of PI-PD controller that will be tuned by trial-and-error method. Performances of both brushed DC motor with and without controller will be compared in terms of transient response which are, rise time, Tr, settling time, Ts, steady state error, ess and lastly percentage overshoot. At the end of the study, the brushed DC motor with PI-PD controller show a better performance compared to the brushed DC motor without any controller.


Sign in / Sign up

Export Citation Format

Share Document