Composites and Advanced Materials for Industrial Applications

2019 ◽  
Vol 35 (8) ◽  
pp. 917-927 ◽  
Author(s):  
Hao Jiang ◽  
Yongsheng Han ◽  
Qiang Zhang ◽  
Jiexin Wang ◽  
Yiqun Fan ◽  
...  

Abstract Materials-oriented chemical engineering involves the intersection of materials science and chemical engineering. Development of materials-oriented chemical engineering not only contributes to material research and industrialization techniques but also opens new avenues for chemical engineering science. This review details the major achievements of materials-oriented chemical engineering fields in China, including preparation strategies for advanced materials based on the principles of chemical engineering as well as innovative separation and reaction techniques determined by new materials. Representative industrial applications are also illustrated, highlighting recent advances in the field of materials-oriented chemical engineering technologies. In addition, we also look at the ongoing trends in materials-oriented chemical engineering in China.


2020 ◽  
Vol 86 (17) ◽  
Author(s):  
Xiaopei Zhang ◽  
Amal Al-Dossary ◽  
Myer Hussain ◽  
Peter Setlow ◽  
Jiahe Li

ABSTRACT The bacterium Bacillus subtilis has long been an important subject for basic studies. However, this organism has also had industrial applications due to its easy genetic manipulation, favorable culturing characteristics for large‐scale fermentation, superior capacity for protein secretion, and generally recognized as safe (GRAS) status. In addition, as the metabolically dormant form of B. subtilis, its spores have attracted great interest due to their extreme resistance to many environmental stresses, which makes spores a novel platform for a variety of applications. In this review, we summarize both conventional and emerging applications of B. subtilis spores, with a focus on how their unique characteristics have led to innovative applications in many areas of technology, including generation of stable and recyclable enzymes, synthetic biology, drug delivery, and material sciences. Ultimately, this review hopes to inspire the scientific community to leverage interdisciplinary approaches using spores to address global concerns about food shortages, environmental protection, and health care.


2014 ◽  
Vol 792 ◽  
pp. 3-14
Author(s):  
Athanasios G. Mamalis

Some of the activities of the Project Center for Nanotechnology and Advanced Engineering (PC-NAE), a joint initiative of the Greek National Center for Scientific Research Demokritos and the Russian Research Center Kurchatov Institute, in advanced manufacturing engineering are briefly outlined, focusing onto some recent trends and developments in manufacturing from macro-, micro-, to nanoscale of advanced materials in the important engineering topics nowadays from industrial, research and academic point of view: nanotechnology/ultraprecision engineering and advanced materials under shock loading, with industrial applications to net-shape manufacturing, bioengineering, energy and transport.


2018 ◽  
Vol 910 ◽  
pp. 58-63
Author(s):  
Athanasios G. Mamalis

Trends and developments in advanced manufacturing from macro- to nanoscale, mainly associated with nanotechnology, precision/ultraprecision manufacturing and advanced materials under low/high speed impact and shock loading, with industrial applications to net-shape manufacturing, biomedical engineering, energy and transport, an outcome of the very extensive work over 40 years on these fields performed by the author and his research international team, are briefly outlined in the present Plenary Lecture of the 5th ESHP 2016 Symposium.


Author(s):  
P. Toumsri ◽  
W. Auppahad ◽  
S. Saknaphawuth ◽  
B. Pongtawornsakun ◽  
S. Kaowphong ◽  
...  

Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO 3 H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H 2 SO 4 at 180°C gave mesoporous carbon bearing SO 3 H groups (SO 3 H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO 3 H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m 2  g −1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g −1 of SO 3 H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (12) ◽  
pp. 995-998 ◽  
Author(s):  
Ping Wu

AbstractTo cope with the dynamic social and market demands for advanced materials, new research strategies have to be developed that go beyond the commonly accepted trial-and-error approaches. To this end, a computational materials design platform, digital materials design (DMD), has been created based on well-established fundamental laws, powerful computing, and computational technology. DMD based on computer simulation may produce data that identify overlooked materials behaviors, which then may lead to new theory to explain them, and further to the design of real experiments to fabricate and test the materials. In this review, an illustration of computational methods used in DMD will be given, followed by applications based on two case studies: (1) the design of chemical additives, and (2) the realization ofp-type ZnO. Similarly, many effective and efficient materials designs have been performed in the using DMD for various industrial applications, which further demonstrate that DMD, and computational modeling in general, is an invaluable tool for materials discovery.


2010 ◽  
Vol 68 ◽  
pp. 135-144 ◽  
Author(s):  
Giovanni Baldi ◽  
Andrea Cioni ◽  
Valentina Dami ◽  
Annalisa Soldi ◽  
Arianna Signorini

In the last years there was an increasing interest of the scientific and technological community in the field of healthy and ecological buildings. Nanotechnology gives a substantial contribution in the development of new advanced materials, environmentally sustainable and safe for the consumers. Due to their multi-functional behaviour, nano-materials are at the basis of a revolutionary technical improvement in buildings: titania nano-structured films are applied on ceramic and glass surfaces increasing drastically the self-cleaning and anti bacterial activity. Substrates with controlled porosity can be designed to obtain anti-pollution surfaces either for external and internal environments, a photo reactor has been developed in our laboratory: a device to assess the photo degradation kinetic of pollutants (NOx and VOC’s) and help customers in the certification of eco-buildings. Surfaces based on nano-silver have been also developed leading to an anti bacterial effect in absence of light meanwhile anti-scratch and zero porosity substrates can be obtained from nano-zirconia and nano-silica suspensions. CERICOL has developed and scaled-up a “green chemistry” synthesis in water or glycols allowing simple industrial applications on different substrates as tiles, glass, plastic, paint, wood and concrete.


Author(s):  
A. M. Bonifas ◽  
E. J. Taylor ◽  
J. J. Sun

Faraday Technology, Inc. has developed electrochemical techniques for the edge and surface finishing of advanced materials, such as titanium alloys, stainless steels, and nickel based superalloys. This technology employs electrochemical metal removal under the influence of a bipolar, pulsed electric field to provide enhanced process control and excellent surface finishes. This process achieves high rates of metal removal in the presence of simple chemistries that are pH neutral, water based, non-toxic, and environmentally benign. This is in contrast to competing technologies that rely on electrolytes that are comprised of concentrated acids or ethylene glycol. This paper will present Faraday’s recent development efforts in a wide variety of industries, including the semiconductor, automotive, and medical industries.


Author(s):  
Tahar Laoui ◽  
Abbas Saeed Hakeem ◽  
Kachalla Abdullahi ◽  
Nouari Saheb ◽  
Nasser Al-Aqeeli

The development of nanostructured materials has been exploited in enormous applications nowadays owing to the remarkable properties possessed by these advanced materials. Among these materials are tungsten carbide (WC)-based alloys, which have been widely used in a range of industrial applications including cutting and drilling tools, wear resistant components in wire drawing, and wear resistant surfaces in various equipments and dies. These alloys are processed using a variety of techniques in which powder metallurgy has been widely adopted. The key challenge lies in retaining the nanostructure of WC-based powders after the consolidation stage that is used to obtain dense parts following powder metallurgy processing. In the present study, the densification parameters, microstructural development and mechanical behavior of WC containing 6, 9 and 12wt. %Co powders in the range of nanometer to micron size of WC particles were investigated. Two types of consolidation techniques were considered namely spark plasma sintering (SPS) and microwave sintering (MW) for a comparative analysis as well as to explore the suitable process that will minimize grain growth. The consolidated (sintered) samples were characterized by X-ray diffraction, scanning electron microscopy, and hardness measurement.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1119
Author(s):  
Valentina Bellotti ◽  
Roberto Simonutti

Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions.


Sign in / Sign up

Export Citation Format

Share Document