materials behaviors
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2022 ◽  
Vol 12 (2) ◽  
pp. 614
Author(s):  
Frydrýšek Karel ◽  
Čepica Daniel ◽  
Halo Tomáš ◽  
Skoupý Ondřej ◽  
Pleva Leopold ◽  
...  

Limb asymmetry can, and often does, cause various health problems. Blount bone staples (clips) are used to correct such uneven growth. This article analyzes the performance of a biomechanical staple during bone (tibia) growth arrest. The staples considered in this study were made of 1.4441 stainless steel, the model of tibia consisted of two materials representing corticalis and spongiosis. Hooke’s law was used for modeling materials’ behaviors for finite element analysis (FEA). The maxima of stress and total staple displacement were evaluated using the finite element method and verification of the results, along with the determination of the maximum loading (growing) force that the staples are capable of withstanding, was performed experimentally. The presented method can be used to determine the safety and usability of staples for bone growth arrest. According to our results, the design of Blount staples considered in this paper is safe and suitable for orthopedic treatment.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6352
Author(s):  
Danilo de Camargo Branco ◽  
Gary J. Cheng

The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for material properties determination. However, computational materials scientists may still have difficulty finding specific force field models for their simulations. Force fields are usually hard to parametrize, and their parameters’ determination is computationally expensive. We show the Lennard-Jones (2-body interactions) combined with the Axilrod-Teller (3-body interactions) parametrization process’ applicability for metals and new classes of materials (MXenes). Because this parametrization process is simple and computationally inexpensive, it allows users to predict materials’ behaviors under close-to-ambient conditions in molecular dynamics, independent of pre-existing potential files. Using the process described in this work, we have made the Ti2C parameters set available for the first time in a peer-reviewed work.


Author(s):  
E Krishna Srinivas

The piston ring is one of the main components of an internal combustion engine. Its main purposes are to seal the combustion chamber of engine. The main objective of this work is to develop the design modeling and then analysis of stress and deformation of the piston rings by using different materials like Grey cast iron, elastomer and Titanium alloy by using ansys software and to investigate these three materials behavior which are used for the piston ring. The project shows the components involved in the single cylinder engine assembly and their operation. Finally we are checking out three materials behaviors which are used for piston rings. This research paper deals with to reduce the friction of a piston ring while maintaining a Large oil film load-carrying capacity, an approach comprising of the inverse method, modeling and analysis of piston rings using Structural and rigid dynamics is deliberated in order to quantify the stress that the rings can bear. Many researchers had considered that the entire surface of the ring was enveloped in an oil film, but much experimental research has discovered that not all the entire surface was soaked. The various parameters studied under structural analysis are displacement and ultimate stress limit using three Different composition materials. A cumulative analysis is performed which considers the combined effect of mechanical and load for determination of the dimensions of the rings.


Nanoscale ◽  
2021 ◽  
Author(s):  
Xiaocong Chang ◽  
Yiwen Feng ◽  
Bin Guo ◽  
Dekai Zhou ◽  
Longqiu Li

Livings in nature have already evolved into unique morphology, structure, materials, behaviors and functions to survive in complex natural environment. Nature has inspired the design ideas, preparation methods and applications...


Author(s):  
Zongyue Fan ◽  
Hao Wang ◽  
Bo Li

Abstract We present a powder-scale meshfree direct numerical simulation (DNS) capability for the powder bed fusion (PBF) based additive manufacturing (AM) processes using the novel Hot Optimal Transportation Meshfree (HOTM) method. The HOTM method is an incremental Lagrangian meshfree computational framework for materials behaviors under extreme thermomechanical loading conditions, which combines the Optimal Transportation Meshfree (OTM) method and the variational thermomechanical constitutive updates. The realistic multi-layer powder bed geometry is modeled explicitly in the HOTM simulations based on experimental data. A phase-aware constitutive model is developed to predict the phase change and multiphase mixing during the PBF AM processes automatically. The governing equations including the linear momentum and energy conservation equations are solved for the multiphase flow simultaneously to predict the deformation, temperature and local state of the powder particles. The powder-scale DNS is employed to study the influence of various laser powers on the melt pool thermodynamics.


2018 ◽  
Vol 243 (8) ◽  
pp. 665-676 ◽  
Author(s):  
Agnes B Meireles ◽  
Daniella K Corrêa ◽  
João VW da Silveira ◽  
Ana LG Millás ◽  
Edison Bittencourt ◽  
...  

Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials, understand, and design new experiments. This work seeks to encourage many other researchers–Dentists, Biologists, Engineers, Pharmacists–to develop innovative materials from different polymers. We highlight synthetic and natural polymers as trends in treatments to motivate an advance in the worldwide discussion and exploration of this interdisciplinary field.


2018 ◽  
Vol 15 ◽  
pp. 154-180
Author(s):  
Guang Long Xu ◽  
Yu Wen Cui

The Ginzburg-Landau (G-L) model possesses the thermodynamic foundation of energy minimization and is available for many dynamic formalisms, thus holds great potential for investigating the complex materials behaviors. The common ingredient in energy spawns the real-time control of diffusion potential and chemical mobility by integrating G-L model with CALPHAD technique. The coupling between martensitic transformation and dislocation evolution is achieved by mean of continuous mechanism. The updated G-L model is then validated against the martensitic transformation coupled with composition redistribution in Fe-C binary system. The modeling allows some deeper insights into the mechanisms of coupling effects behind the observed phenomena. It has been proven that the partitioning of carbon in steels is an ordinary diffusion governed by instantaneous diffusion potential and chemical mobility. The rough twin boundaries and retained austenite within the martensite should be attributed to the effect of dislocations. Although the developed model in this chapter has deficiencies, it sheds some lights on the integration of multi-physics models for a complex phase transformation.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
M. Tazi ◽  
M. S. Sukiman ◽  
F. Erchiqui ◽  
A. Imad ◽  
T. Kanit

Wood polymer composites (WPC) have well proven their applicability in several fields of the plasturgy sector, due to their aesthetics and low maintenance costs. However, for plasturgy applications, the characterization of viscoelastic behavior and thermomechanical and thermophysical properties of WPC with the temperature and wood filler contents is essential. Therefore, the processability of polymer composites made up with different percentage of wood particles needs a better understanding of materials behaviors in accordance with temperature and wood particles contents. To this end, a numerical analysis of the viscoelastic, mechanical, and thermophysical properties of composite composed of high density polyethylene (HDPE) reinforced with soft wood particles is evaluated.


Sign in / Sign up

Export Citation Format

Share Document