Hybrid Computational Intelligence and the Basic Concepts and Recent Advances

Author(s):  
Georgios Dounias

In this chapter, computational intelligence and its major methodologies are introduced, and then hybrid intelligent systems are defined, and the most popular hybrid intelligent approaches are discussed. The increased popularity of hybrid intelligent systems during the last decade is the result of the extensive success of these systems in a wide range of real-world complex problems, but also has to do with the increased capabilities of computational technology. One of the reasons for this success has to do with the synergy derived by the computational intelligent components, such as machine learning, fuzzy logic, neural networks, genetic algorithms, or other intelligent algorithms and techniques. Each of the partial methodologies provides hybrid systems with complementary reasoning and searching methods that allow the use of domain knowledge and empirical data to solve complex problems. The chapter includes recent advances and new findings in the area of hybrid computational intelligence.

Author(s):  
Georgios Dounias

In this paper computational intelligence and its major methodologies are introduced in the first place, and then hybrid intelligent systems are defined and the most popular hybrid intelligent approaches are discussed. The increased popularity of hybrid intelligent systems during the last decade, is the result of the extensive success of these systems in a wide range of real-world complex problems, but also has to do with the increased capabilities of computational technology. One of the reasons for this success has to do with the synergy derived by the computational intelligent components, such as machine learning, fuzzy logic, neural networks, genetic algorithms, or other intelligent algorithms and techniques. Each of the partial methodologies provides hybrid systems with complementary reasoning and searching methods that allow the use of domain knowledge and empirical data to solve complex problems. The paper includes recent advances and new findings in the area of hybrid computational intelligence.


Author(s):  
Yingxu Wang

Inference as the basic mechanism of thought is abilities gifted to human beings, which is a cognitive process that creates rational causations between a pair of cause and effect based on empirical arguments, formal reasoning, and/or statistical norms. It’s recognized that a coherent theory and mathematical means are needed for dealing with formal causal inferences. Presented is a novel denotational mathematical means for formal inferences known as Inference Algebra (IA) and structured as a set of algebraic operators on a set of formal causations. The taxonomy and framework of formal causal inferences of IA are explored in three categories: a) Logical inferences; b) Analytic inferences; and c) Hybrid inferences. IA introduces the calculus of discrete causal differential and formal models of causations. IA enables artificial intelligence and computational intelligent systems to mimic human inference abilities by cognitive computing. A wide range of applications of IA are identified and demonstrated in cognitive informatics and computational intelligence towards novel theories and technologies for machine-enabled inferences and reasoning. This work is presented in two parts. The inference operators of IA as well as their extensions and applications will be presented in this paper; while the structure of formal inference, the framework of IA, and the mathematical models of formal causations has been published in the first part of the paper in IJCINI 5(4).


2020 ◽  
Vol 26 (8) ◽  
pp. 867-904 ◽  
Author(s):  
Maria Fesatidou ◽  
Anthi Petrou ◽  
Geronikaki Athina

Background: Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections. Objective: The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities. Method: To reach our goal, a literature survey that covers the last decade was performed. Results: As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned. Conclusion: It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alhassan Alkuhlani ◽  
Walaa Gad ◽  
Mohamed Roushdy ◽  
Abdel-Badeeh M. Salem

Background: Glycosylation is one of the most common post-translation modifications (PTMs) in organism cells. It plays important roles in several biological processes including cell-cell interaction, protein folding, antigen’s recognition, and immune response. In addition, glycosylation is associated with many human diseases such as cancer, diabetes and coronaviruses. The experimental techniques for identifying glycosylation sites are time-consuming, extensive laboratory work, and expensive. Therefore, computational intelligence techniques are becoming very important for glycosylation site prediction. Objective: This paper is a theoretical discussion of the technical aspects of the biotechnological (e.g., using artificial intelligence and machine learning) to digital bioinformatics research and intelligent biocomputing. The computational intelligent techniques have shown efficient results for predicting N-linked, O-linked and C-linked glycosylation sites. In the last two decades, many studies have been conducted for glycosylation site prediction using these techniques. In this paper, we analyze and compare a wide range of intelligent techniques of these studies from multiple aspects. The current challenges and difficulties facing the software developers and knowledge engineers for predicting glycosylation sites are also included. Method: The comparison between these different studies is introduced including many criteria such as databases, feature extraction and selection, machine learning classification methods, evaluation measures and the performance results. Results and conclusions: Many challenges and problems are presented. Consequently, more efforts are needed to get more accurate prediction models for the three basic types of glycosylation sites.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4672
Author(s):  
Mohamed H. Hassan ◽  
Cian Vyas ◽  
Bruce Grieve ◽  
Paulo Bartolo

The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christos Katsaros ◽  
Sophie Le Panse ◽  
Gillian Milne ◽  
Carl J. Carrano ◽  
Frithjof Christian Küpper

Abstract The objective of the present study is to examine the fine structure of vegetative cells of Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen due to its importance as a model organism in a wide range of biological studies, as a keystone species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, and its significance as a raw material for the production of alginate. Details of the fine structural features of vegetative cells are described, with particular emphasis on the differences between the two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of the cells was similar to that already described, with minor differences between the different cell types. An intense activity of the Golgi system was found associated with the thick external cell wall, with large dictyosomes from which numerous vesicles and cisternae are released. An interesting type of cisternae was found in the cryofixed material, which was not visible with the chemical fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell wall or to young internal walls. An increased number of these structures was observed near the plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings of this work underline the importance of such combined studies which reveal new data not known until now using the old conventional methods. The main conclusion of the present study is that cryofixation is the method of choice for studying Laminaria cytology by transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document