Analysis of Machine Learning Algorithms in Health Care to Predict Heart Disease

Author(s):  
P. Priyanga ◽  
N. C. Naveen

This article describes how healthcare organizations is growing increasingly and are the potential beneficiary users of the data that is generated and gathered. From hospitals to clinics, data and analytics can be a very powerful tool that can improve patient care and satisfaction with efficiency. In developing countries, cardiovascular diseases have a huge impact on increasing death rates and are expected by the end of 2020 in spite of the best clinical practices. The current Machine Learning (ml) algorithms are adapted to estimate the heart disease risks in middle aged patients. Hence, to predict the heart diseases a detailed analysis is made in this research work by taking into account the angiographic heart disease status (i.e. ≥ 50% diameter narrowing). Deep Neural Network (DNN), Extreme Learning Machine (elm), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) learning algorithm (with linear and polynomial kernel functions) are considered in this work. The accuracy and results of these algorithms are analyzed by comparing the effectiveness among them.

Author(s):  
P Priyanga ◽  
N C Naveen

This article describes how healthcare organizations is growing increasingly and are the potential beneficiary users of the data that is generated and gathered. From hospitals to clinics, data and analytics can be a very powerful tool that can improve patient care and satisfaction with efficiency. In developing countries, cardiovascular diseases have a huge impact on increasing death rates and are expected by the end of 2020 in spite of the best clinical practices. The current Machine Learning (ml) algorithms are adapted to estimate the heart disease risks in middle aged patients. Hence, to predict the heart diseases a detailed analysis is made in this research work by taking into account the angiographic heart disease status (i.e. ≥ 50% diameter narrowing). Deep Neural Network (DNN), Extreme Learning Machine (elm), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) learning algorithm (with linear and polynomial kernel functions) are considered in this work. The accuracy and results of these algorithms are analyzed by comparing the effectiveness among them.


2022 ◽  
Vol 19 ◽  
pp. 1-9
Author(s):  
Nikhil Bora ◽  
Sreedevi Gutta ◽  
Ahmad Hadaegh

Heart Disease has become one of the most leading cause of the death on the planet and it has become most life-threatening disease. The early prediction of the heart disease will help in reducing death rate. Predicting Heart Disease has become one of the most difficult challenges in the medical sector in recent years. As per recent statistics, about one person dies from heart disease every minute. In the realm of healthcare, a massive amount of data was discovered for which the data-science is critical for analyzing this massive amount of data. This paper proposes heart disease prediction using different machine-learning algorithms like logistic regression, naïve bayes, support vector machine, k nearest neighbor (KNN), random forest, extreme gradient boost, etc. These machine learning algorithm techniques we used to predict likelihood of person getting heart disease on the basis of features (such as cholesterol, blood pressure, age, sex, etc. which were extracted from the datasets. In our research we used two separate datasets. The first heart disease dataset we used was collected from very famous UCI machine learning repository which has 303 record instances with 14 different attributes (13 features and one target) and the second dataset that we used was collected from Kaggle website which contained 1190 patient’s record instances with 11 features and one target. This dataset is a combination of 5 popular datasets for heart disease. This study compares the accuracy of various machine learning techniques. In our research, for the first dataset we got the highest accuracy of 92% by Support Vector Machine (SVM). And for the second dataset, Random Forest gave us the highest accuracy of 94.12%. Then, we combined both the datasets which we used in our research for which we got the highest accuracy of 93.31% using Random Forest.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2019 ◽  
Vol 8 (2) ◽  
pp. 4499-4504

Heart diseases are responsible for the greatest number of deaths all over the world. These diseases are usually not detected in early stages as the cost of medical diagnostics is not affordable by a majority of the people. Research has shown that machine learning methods have a great capability to extract valuable information from the medical data. This information is used to build the prediction models which provide cost effective technological aid for a medical practitioner to detect the heart disease in early stages. However, the presence of some irrelevant and redundant features in medical data deteriorates the competence of the prediction system. This research was aimed to improve the accuracy of the existing methods by removing such features. In this study, brute force-based algorithm of feature selection was used to determine relevant significant features. After experimenting rigorously with 7528 possible combinations of features and 5 machine learning algorithms, 8 important features were identified. A prediction model was developed using these significant features. Accuracy of this model is experimentally calculated to be 86.4%which is higher than the results of existing studies. The prediction model proposed in this study shall help in predicting heart disease efficiently.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 108
Author(s):  
Priyadarshini Chatterjee ◽  
Ch. Mamatha ◽  
T. Jagadeeswari ◽  
Katha Chandra Shekhar

Every 100th cases in cancer we come across are of breasts cancer cases. It is becoming very common in woman of all ages. Correct detection of these lesions in breast is very important. With less of human intervention, the goal is to do the correct diagnosis. Not all the cases of breast masses are futile. If the cases are not dealt properly, they might create panic amongst people. Human detection without machine intervention is not hundred percent accurate. If machines can be deeply trained, they can do the same work of detection with much more accuracy. Bayesian method has a vast area of application in the field of medical image processing as well as in machine learning. This paper intends to use Bayesian probabilistic in image segmentation as well as in machine learning. Machine learning in image processing means application in pattern recognition. There are various machine learning algorithms that can classify an image at their best. In the proposed system, we will be firstly segment the image using Bayesian method. On the segmented parts of the image, we will be applying machine learning algorithm to diagnose the mass or the growth.  


2019 ◽  
Vol 16 (10) ◽  
pp. 4425-4430 ◽  
Author(s):  
Devendra Prasad ◽  
Sandip Kumar Goyal ◽  
Avinash Sharma ◽  
Amit Bindal ◽  
Virendra Singh Kushwah

Machine Learning is a growing area in computer science in today’s era. This article is focusing on prediction analysis using K-Nearest Neighbors (KNN) Machine Learning algorithm. Data in the dataset are processed, analyzed and predicated using the specified algorithm. Introduction of various Machine Learning algorithms, its pros and cons have been discussed. The KNN algorithm with detail study is given and it is implemented on the specified data with certain parameters. The research work elucidates prediction analysis and explicates the prediction of quality of restaurants.


Author(s):  
Baban. U. Rindhe ◽  
Nikita Ahire ◽  
Rupali Patil ◽  
Shweta Gagare ◽  
Manisha Darade

Heart-related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need fora reliable, accurate, and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart-related diseases. Heart is the next major organ comparing to the brain which has more priority in the Human body. It pumps the blood and supplies it to all organs of the whole body. Prediction of occurrences of heart diseases in the medical field is significant work. Data analytics is useful for prediction from more information and it helps the medical center to predict various diseases. A huge amount of patient-related data is maintained on monthly basis. The stored data can be useful for the source of predicting the occurrence of future diseases. Some of the data mining and machine learning techniques are used to predict heart diseases, such as Artificial Neural Network (ANN), Random Forest,and Support Vector Machine (SVM).Prediction and diagnosingof heart disease become a challenging factor faced by doctors and hospitals both in India and abroad. To reduce the large scale of deaths from heart diseases, a quick and efficient detection technique is to be discovered. Data mining techniques and machine learning algorithms play a very important role in this area. The researchers accelerating their research works to develop software with thehelp of machine learning algorithms which can help doctors to decide both prediction and diagnosing of heart disease. The main objective of this research project is to predict the heart disease of a patient using machine learning algorithms.


In a large distributed virtualized environment, predicting the alerting source from its text seems to be daunting task. This paper explores the option of using machine learning algorithm to solve this problem. Unfortunately, our training dataset is highly imbalanced. Where 96% of alerting data is reported by 24% of alerting sources. This is the expected dataset in any live distributed virtualized environment, where new version of device will have relatively less alert compared to older devices. Any classification effort with such imbalanced dataset present different set of challenges compared to binary classification. This type of skewed data distribution makes conventional machine learning less effective, especially while predicting the minority device type alerts. Our challenge is to build a robust model which can cope with this imbalanced dataset and achieves relative high level of prediction accuracy. This research work stared with traditional regression and classification algorithms using bag of words model. Then word2vec and doc2vec models are used to represent the words in vector formats, which preserve the sematic meaning of the sentence. With this alerting text with similar message will have same vector form representation. This vectorized alerting text is used with Logistic Regression for model building. This yields better accuracy, but the model is relatively complex and demand more computational resources. Finally, simple neural network is used for this multi-class text classification problem domain by using keras and tensorflow libraries. A simple two layered neural network yielded 99 % accuracy, even though our training dataset was not balanced. This paper goes through the qualitative evaluation of the different machine learning algorithms and their respective result. Finally, two layered deep learning algorithms is selected as final solution, since it takes relatively less resource and time with better accuracy values.


Author(s):  
Satwik P M and Dr. Meenatchi Sundram

In this Research article, we presented a new approach for predicting the flood through the advanced Machine learning Algorithm which is one among the Neural networks class that outperforms itself in best data operations and predictive analytics. This Research article discusses in detail about the prediction of flood occurrences evaluation process. We interpreted the Research with many algorithms that is existing, and the Research work have been dealing with different research works inculcated and compared with different Research approaches. On Comparing to the Previous Researches its observed that the Neural Turing networks have been performing the prediction of the rainfall and flood-based disasters for the consecutive year counts of 10,15 and 20 with 93.8% accuracy. Here the Research is analyzed with various parameters and Comparing it with the other researches which is implemented with other machine learning algorithms. Comparing with the previous researches the Idea of the research have been described and evaluated with the different evaluation parameters including the number of iterations or Epochs.


Ethiopia is the leading producer of chickpea in Africa and among the top ten most important producers of chickpea in the world. Debre Zeit Agriculture Research Center is a research center in Ethiopia which is mandated for the improvement of chickpea and other crops. Genome enabled prediction technologies trying to transform the classification of chickpea types and upgrading the existing identification paradigm.Current state of the identification of chickpea types in Ethiopia still sticks to a manual. Domain experts tried to recognize every chickpea type, the way and efficiency of identifying each chickpea types mainly depend on the skills and experience of experts in the domain area and this frequently causes error and sometimes inaccurate. Most of the classification and identification of crops researches were done outside Ethiopia; for local and emerging varieties, there is a need to design classification model that assists selection mechanisms of chickpea and even accuracy of an existing algorithm should be verified and optimized. The main aim of this study is to design chickpea type classification model using machine learning algorithm that classify chickpea types. This research work has a total of 8303 records with 8 features and 80% for training and 20% for testing were used. Data preprocessing were done to prepare the dataset for experiments. ANN, SVM and DT were used to build the model. For evaluating the performance of the model confusion matrix with Accuracy, Recall and Precision were used. The experimental results show that the best-performed algorithms were decision tree and achieve 97.5% accuracy. After the evaluation of results found in this research work, agriculture research centers and companies have benefited. The model of chickpea type classification will be applied in Debre Zeit agriculture research center in Ethiopia as a base to support the experts during chickpea type identification process. In addition it enables the expertise to save time, effort and cost with the support of the identification model. Moreover, this research can also be used as a corner stone in the area and will be referred by future researchers in the domain area.


Sign in / Sign up

Export Citation Format

Share Document