Fog Computing

Author(s):  
Bhumika Paharia ◽  
Kriti Bhushan

Fog computing is an extension to cloud computing that inhibits its limitations and enhances its amenities. Being similar to cloud computing, it has some more fascinating features that escalate the overall performance of the system. It faces many new disputes besides those already inherited from cloud computing. Fog computing is actually a paradigm that provides services at the network's edge as it serves the end-users with data, applications, storing, and computing capabilities. Fog computing is a new breed in services and applications to the end-users by enabling the above features, hence making its security and privacy aspects much more challenging then the cloud computing. Further, in this chapter, the basic concepts of fog computing are discussed with its applications as a high lighting feature. In addition, discussion about the attacks that could setback the advantages of fog computing and some defense mechanisms to overcome the effects of these attack have been discussed, giving a comprehensive study of fog computing.

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3135
Author(s):  
Mohammed Alshehri ◽  
Brajendra Panda ◽  
Sultan Almakdi ◽  
Abdulwahab Alazeb ◽  
Hanan Halawani ◽  
...  

The world has experienced a huge advancement in computing technology. People prefer outsourcing their confidential data for storage and processing in cloud computing because of the auspicious services provided by cloud service providers. As promising as this paradigm is, it creates issues, including everything from data security to time latency with data computation and delivery to end-users. In response to these challenges, the fog computing paradigm was proposed as an extension of cloud computing to overcome the time latency and communication overhead and to bring computing and storage resources close to both the ground and the end-users. However, fog computing inherits the same security and privacy challenges encountered by traditional cloud computing. This paper proposed a fine-grained data access control approach by integrating the ciphertext policy attribute-based encryption (CP-ABE) algorithm and blockchain technology to secure end-users’ data security against rogue fog nodes in case a compromised fog node is ousted. In this approach, we proposed federations of fog nodes that share the same attributes, such as services and locations. The fog federation concept minimizes the time latency and communication overhead between fog nodes and cloud servers. Furthermore, the blockchain idea and the CP-ABE algorithm integration allow for fog nodes within the same fog federation to conduct a distributed authorization process. Besides that, to address time latency and communication overhead issues, we equip each fog node with an off-chain database to store the most frequently accessed data files for a particular time, as well as an on-chain access control policies table (on-chain files tracking table) that must be protected from tampering by rogue fog nodes. As a result, the blockchain plays a critical role here because it is tamper-proof by nature. We assess our approach’s efficiency and feasibility by conducting a simulation and analyzing its security and performance.


Internet of things (IoT) is an emerging concept which aims to connect billions of devices with each other anytime regardless of their location. Sadly, these IoT devices do not have enough computing resources to process huge amount of data. Therefore, Cloud computing is relied on to provide these resources. However, cloud computing based architecture fails in applications that demand very low and predictable latency, therefore the need for fog computing which is a new paradigm that is regarded as an extension of cloud computing to provide services between end users and the cloud user. Unfortunately, Fog-IoT is confronted with various security and privacy risks and prone to several cyberattacks which is a serious challenge. The purpose of this work is to present security and privacy threats towards Fog-IoT platform and discuss the security and privacy requirements in fog computing. We then proceed to propose an Intrusion Detection System (IDS) model using Standard Deep Neural Network's Back Propagation algorithm (BPDNN) to mitigate intrusions that attack Fog-IoT platform. The experimental Dataset for the proposed model is obtained from the Canadian Institute for Cybersecurity 2017 Dataset. Each instance of the attack in the dataset is separated into separate files, which are DoS (Denial of Service), DDoS (Distributed Denial of Service), Web Attack, Brute Force FTP, Brute Force SSH, Heartbleed, Infiltration and Botnet (Bot Network) Attack. The proposed model is trained using a 3-layer BP-DNN


2018 ◽  
Vol 10 (3) ◽  
pp. 61-83 ◽  
Author(s):  
Deepali Chaudhary ◽  
Kriti Bhushan ◽  
B.B. Gupta

This article describes how cloud computing has emerged as a strong competitor against traditional IT platforms by offering low-cost and “pay-as-you-go” computing potential and on-demand provisioning of services. Governments, as well as organizations, have migrated their entire or most of the IT infrastructure to the cloud. With the emergence of IoT devices and big data, the amount of data forwarded to the cloud has increased to a huge extent. Therefore, the paradigm of cloud computing is no longer sufficient. Furthermore, with the growth of demand for IoT solutions in organizations, it has become essential to process data quickly, substantially and on-site. Hence, Fog computing is introduced to overcome these drawbacks of cloud computing by bringing intelligence to the edge of the network using smart devices. One major security issue related to the cloud is the DDoS attack. This article discusses in detail about the DDoS attack, cloud computing, fog computing, how DDoS affect cloud environment and how fog computing can be used in a cloud environment to solve a variety of problems.


2020 ◽  
Vol 19 ◽  

Fog computing is a promising technology that is used by many organizations and end-users. It has characteristics and advantages that offer services such as computing, storage, communication, and application services. It facilitates these services to end-users and allows to increase the number of devices that can connect to the network. In this paper, we provide a survey of Fog computing technology in terms of its architecture, features, advantages and disadvantages. We provide a comparison of this model with Cloud Computing, Mobile-Edge Computing, and Cloudlet Computing. We also present challenges and issues that face Fog Computing such as privacy and security, control and management, fog networking and task scheduling. Finally, we discuss aspects of Fog computing security and the benefits of integration between Fog computing and other techniques like Internet of Things and Cloud Computing.


2021 ◽  
Author(s):  
◽  
L. P. Bopape

With the advent of IoT, Device-to-Device (D2D) communications has afforded a new paradigm that reliably facilitates data exchange among devices in proximity without necessarily involving the base (core) network. It is geared towards the need to improve network performance where short-range communications is concerned, as well as supporting proximitybased services. However, the relentless growth in the number of network end-users as well as interconnected communication-capable devices, in the next-generation IoT-based 5G cellular networks has resulted in novel services and applications, most of which are security-sensitive. It is thus of paramount importance that security issues be addressed. A posing challenge is that the devices are mostly resource-constrained in both power and computing. As such, it is not practical to implement present day as well as traditional security frameworks and protocols under such a scenario, unless strides are taken towards the improvements of data throughput rates, higher bandwidth provisioning, lower round trip latencies, enhanced spectral efficiencies, and energy efficiency (leading to even lower power consumption, by the already constrained devices) in IoT 5G/LTE networks. Therefore, this work focused on exploring and designing schemes that enhance security and privacy among communicating parties. Otherwise, without reliable as well as robust privacy and security preservation measures in the network, most services and applications will be exposed to various forms of malicious attacks. With such a widened cyber-attack space, both privacy and security for end users can easily be compromised. The work herein addresses privacy for subscribers to the various available services and applications as well as security of the associated data. Ultimately, we propose a Fog-Cloud computing paradigm-assisted security framework that comprises two schemes. The aim is to implement a lightweight-based cartographic algorithm that ensures that communication overheads, round trip latencies, computational loads as well as energy consumption by the otherwise resource-constrained surveillance cameras deployed remotely, are kept minimal. Overall, by way of both analysis and simulation, we ascertain that a Fog-Cloud computing-based lightweight security-based scheme has the potential to greatly improve security and privacy preservation, as well as overall performance despite the resource-constrained nature of the devices.


Author(s):  
R. Priyadarshini ◽  
N. Malarvizhi ◽  
E. A. Neeba

Fog computing is a new paradigm believed to be an extension of cloud computing and services to the sting of the network. Similarly, like Cloud, Fog provides computing, data, storage, and various application services to the connected end-users. Fog computing uses one or a lot of combined end users or nearby end users edge devices to perform the configuration, communication, storage, control activity, and management functions over the infrastructure supported. This new paradigm solves the latency and information measure limitation issues encountered from the cloud computing. Primarily, the architecture of the fog computing is discussed and analyzed during this work and then indicates the connected potential security and trust problems. Then, however such problems are tackled within the existing literature is systematically reportable. Finally, the open challenges, analysis, trends, and future topics of security and trust in fog computing are mentioned.


Author(s):  
S. R. Mani Sekhar ◽  
Sharmitha S. Bysani ◽  
Vasireddy Prabha Kiranmai

Security and privacy issues are the challenging areas in the field of internet of things (IoT) and fog computing. IoT and fog has become an involving technology allowing major changes in the field of information systems and communication systems. This chapter provides the introduction of IoT and fog technology with a brief explanation of how fog is overcoming the challenges of cloud computing. Thereafter, the authors discuss the different security and privacy issues and its related solutions. Furthermore, they present six different case studies which will help the reader to understand the platform of IoT in fog.


Author(s):  
Stojan Kitanov ◽  
Toni Janevski

Pushing computing, control, data storage, and processing into the cloud has been a key trend in the past decade. However, the cloud alone encounters growing limitations, such as reduced latency, high mobility, high scalability, and real-time execution in order to meet the upcoming computing and intelligent networking demands. A new paradigm called fog computing has emerged to overcome these limits. Fog extends cloud computing and services to the edge of the network. It provides data, computing, storage, and application services to end-users that can be hosted at the network edge. It reduces service latency, and improves QoS/QoE, that results in superior user experience. This chapter is about introduction and overview of fog computing, comparison between fog computing and cloud computing, fog computing and mobile edge computing, possible fog computing architecture, applications of fog computing, and possible research directions.


Author(s):  
Nida Kauser Khanum ◽  
Pankaj Lathar ◽  
G. M. Siddesh

Fog computing is an extension of cloud computing, and it is one of the most important architypes in the current world. Fog computing is like cloud computing as it provides data storage, computation, processing, and application services to end-users. In this chapter, the authors discuss the security and privacy issues concerned with fog computing. The issues present in cloud are also inherited by fog computing, but the same methods available for cloud computing are not applicable to fog computing due to its decentralized nature. The authors also discuss a few real-time applications like healthcare systems, intelligent food traceability, surveillance video stream processing, collection, and pre-processing of speech data. Finally, the concept of decoy technique and intrusion detection and prevention technique is covered.


Author(s):  
Sejal Atit Bhavsar ◽  
Kirit J Modi

Fog computing is a paradigm that extends cloud computing services to the edge of the network. Fog computing provides data, storage, compute and application services to end users. The distinguishing characteristics of fog computing are its proximity to the end users. The application services are hosted on network edges like on routers, switches, etc. The goal of fog computing is to improve the efficiency and reduce the amount of data that needs to be transported to cloud for analysis, processing and storage. Due to heterogeneous characteristics of fog computing, there are some issues, i.e. security, fault tolerance, resource scheduling and allocation. To better understand fault tolerance, we highlighted the basic concepts of fault tolerance by understanding different fault tolerance techniques i.e. Reactive, Proactive and the hybrid. In addition to the fault tolerance, how to balance resource utilization and security in fog computing are also discussed here. Furthermore, to overcome platform level issues of fog computing, Hybrid fault tolerance model using resource management and security is presented by us.


Sign in / Sign up

Export Citation Format

Share Document