Feasibility Conditions of Concurrent Streams

Author(s):  
Phillip K.C. Tse

Multimedia storage systems store data objects and receive streams of requests from the multimedia server. When a client wishes to display an object, it sends a new object request for the multimedia object to the multimedia server as shown in Figure 15.1. The multimedia server checks to see if this new stream can be accepted. If accepted, the server sends a data request to the storage system to retrieve the first data stripe. The storage system returns the data stripe to the server. The server then encapsulates the data stripe as data packets and sends the data packets to the client. The client extracts the data stripe from the data packets. Afterwards, the server sends data requests periodically to the storage system. Each of these data requests has a deadline associated with it. If the request cannot be served before the deadline, the client program does not have any more data to display. The stream thus will be suspended or aborted. Therefore, every request of a stream, except the first one, must be served within the deadline to ensure continuity of the stream. Before we consider the scheduling methods for request streams in the next chapter, we describe the feasibility to accept concurrent streams in this chapter.

2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
Author(s):  
Mervette El Batouti ◽  
H. A. Fetouh

New ferroelectric perovskite sample: excellent dielectric, negligible dielectric loss for energy storage systems such as solar cells, solar ponds, and thermal collectors has been prepared at low cost using nanotechnology.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Doerte Laing ◽  
Wolf-Dieter Steinmann ◽  
Michael Fiß ◽  
Rainer Tamme ◽  
Thomas Brand ◽  
...  

Cost-effective integrated storage systems are important components for the accelerated market penetration of solarthermal power plants. Besides extended utilization of the power block, the main benefits of storage systems are improved efficiency of components, and facilitated integration into the electrical grids. For parabolic trough power plants using synthetic oil as the heat transfer medium, the application of solid media sensible heat storage is an attractive option in terms of investment and maintenance costs. For commercial oil trough technology, a solid media sensible heat storage system was developed and tested. One focus of the project was the cost reduction of the heat exchanger; the second focus lies in the energetic and exergetic analysis of modular storage operation concepts, including a cost assessment of these concepts. The results show that technically there are various interesting ways to improve storage performance. However, these efforts do not improve the economical aspect. Therefore, the tube register with straight parallel tubes without additional structures to enhance heat transfer has been identified as the best option concerning manufacturing aspects and investment costs. The results of the energetic and exergetic analysis of modular storage integration and operation concepts show a significant potential for economic optimization. An increase of more than 100% in storage capacity or a reduction of more than a factor of 2 in storage size and therefore investment cost for the storage system was calculated. A complete economical analysis, including the additional costs for this concept on the solar field piping and control, still has to be performed.


Author(s):  
Jaeho Jeong ◽  
Seong-Joon Park ◽  
Jae-Won Kim ◽  
Jong-Seon No ◽  
Ha Hyeon Jeon ◽  
...  

Abstract Motivation In DNA storage systems, there are tradeoffs between writing and reading costs. Increasing the code rate of error-correcting codes may save writing cost, but it will need more sequence reads for data retrieval. There is potentially a way to improve sequencing and decoding processes in such a way that the reading cost induced by this tradeoff is reduced without increasing the writing cost. In past researches, clustering, alignment, and decoding processes were considered as separate stages but we believe that using the information from all these processes together may improve decoding performance. Actual experiments of DNA synthesis and sequencing should be performed because simulations cannot be relied on to cover all error possibilities in practical circumstances. Results For DNA storage systems using fountain code and Reed-Solomon (RS) code, we introduce several techniques to improve the decoding performance. We designed the decoding process focusing on the cooperation of key components: Hamming-distance based clustering, discarding of abnormal sequence reads, RS error correction as well as detection, and quality score-based ordering of sequences. We synthesized 513.6KB data into DNA oligo pools and sequenced this data successfully with Illumina MiSeq instrument. Compared to Erlich’s research, the proposed decoding method additionally incorporates sequence reads with minor errors which had been discarded before, and thuswas able to make use of 10.6–11.9% more sequence reads from the same sequencing environment, this resulted in 6.5–8.9% reduction in the reading cost. Channel characteristics including sequence coverage and read-length distributions are provided as well. Availability The raw data files and the source codes of our experiments are available at: https://github.com/jhjeong0702/dna-storage.


2021 ◽  
Author(s):  
Gregory Kaminski ◽  
Philip Odonkor

Abstract The decreasing cost of implementation and increasing regulatory incentive to lower energy use have led to an increased adoption of distributed energy resources in recent years. This increased adoption has been further fueled by a surge in energy consciousness and the expansion of energy-saving products and technologies. To lower reliance on the electrical grid and fully realize the benefits of distributed energy resources, many consumers have also elected to use battery systems to store generated energy. For owners of multiple buildings, or multiple owners willing to share the operational cost, building clusters may be formed to more effectively take advantage of these distributed resources and storage systems. The implementation of these systems in existing buildings introduces the question of what makes a “good” building cluster. Furthermore, the scalable nature of distributed energy sources and storage systems create countless possibilities for system configuration. Through comparison of unique two-building clusters from a stock of five buildings with a given distributed energy resource (in this case, a solar photovoltaic panel array) and energy storage system, we develop a fundamental understanding of the underlying factors that allow building clusters to be less reliant on the utility grid and make better use of energy generation and storage systems.


2021 ◽  
Vol 11 (21) ◽  
pp. 10500
Author(s):  
Volker Dreißigacker

Thermal energy storage systems open up high potentials for improvements in efficiency and flexibility for power plant and industrial applications. Transferring such technologies as basis for thermal management concepts in battery-electric vehicles allow alternative ways for heating the interior and avoid range limitations during cold seasons. The idea of such concepts is to generate heat electrically (power-to-heat) parallel of charging the battery, store it efficiently and discharge heat at a defined temperature level. The successful application of such concepts requires two central prerequisites: higher systemic storage densities compared to today’s battery-powered PTC heaters as well as high charging and discharging powers. A promising approach for both requirements is based on solids as thermal energy storage. These allow during discharging an efficient heat transfer to the gaseous heat transfer medium (air) due to a wide range of geometric configurations with high specific surfaces and during charging high storage densities due to use of ceramic materials suitable for high operating temperatures. However, for such concepts suitable heating systems with small dimensions are needed, allowing an efficient and homogeneous heat transfer to the solid with high charging powers and high heating temperatures. An appropriate technology for this purpose is based on resistance heating wires integrated inside the channel shaped solids. These promise high storage densities due to operating wire temperature of up to 1300 °C and an efficient heat transport via radiation. Such electrically heated storage systems have been known for a long time for stationary applications, e.g., domestic storage heaters, but are new for mobile applications. For evaluation such concepts with regard to systemic storage and power density as well as to identify preferred configurations extensive investigations are necessary. For this purpose, transient models for the relevant heat transport mechanisms and the whole storage system were created. In order to allow time-efficient simulations studies for such an electrical heated storage system, a novel correlation for the effective radiation coefficient based on the Fourier Number was derived. This coefficient includes radiation effects and thermal conduction resistances and enables through its dimensionless parameterization the investigation of the charging process for a wide range of geometrical configurations. Based on application-typical specifications and the derived Fourier based correlation, extensive variation studies regarding the storage system were performed and evaluated with respect to systemic storage densities, heating wire surface loads and dimensions. For a favored design option selected here, maximum systemic storage densities of 201 Wh/kg at maximum heating wire surface loads of 4.6 W/cm2 are achieved showing significant benefits compared to today’s battery powered PTC heaters. Additionally, for proofing and confirming the storage concept, a test rig was erected focusing experimental investigations on the charging process. For a first experimental setup-up including all relevant components, mean temperature-related deviations between the simulative and the experimental results of 4.1% were detected and storage temperatures of up to 870 °C were reached. The systematically performed results confirm the feasibility, high efficiency, thermodynamic synergies with geometric requirements during thermal discharging and the potential of the technology to reach higher systemic storage densities compared to current solutions.


This paper provides the management methods of AC & DC smart grids. AC smart grids square measure a convenient approach to integration distributed energy systems with utility power systems. Smart grid may be a arrangement of smart generators, fuel cell, storage systems and masses. DC micro grids will cause additional economical integration of distributed generation. The methods of smart grids measure completely by the management of converters. In solar panel maximum cost utilized in storage systems like battery. In this paper a latest method has been recommended to replace the battery with fuel cell. Stored hydrogen used as a fuel which generate electricity. In this type of hydrogen storage system efficiency is not more than 55 percentages. This paper explaining about the scheme of the management methods of converter and the management methods of smart grids in each AC & DC conditions


2021 ◽  
Vol 17 (3) ◽  
pp. 1-24
Author(s):  
Duwon Hong ◽  
Keonsoo Ha ◽  
Minseok Ko ◽  
Myoungjun Chun ◽  
Yoona Kim ◽  
...  

A recent ultra-large SSD (e.g., a 32-TB SSD) provides many benefits in building cost-efficient enterprise storage systems. Owing to its large capacity, however, when such SSDs fail in a RAID storage system, a long rebuild overhead is inevitable for RAID reconstruction that requires a huge amount of data copies among SSDs. Motivated by modern SSD failure characteristics, we propose a new recovery scheme, called reparo , for a RAID storage system with ultra-large SSDs. Unlike existing RAID recovery schemes, reparo repairs a failed SSD at the NAND die granularity without replacing it with a new SSD, thus avoiding most of the inter-SSD data copies during a RAID recovery step. When a NAND die of an SSD fails, reparo exploits a multi-core processor of the SSD controller in identifying failed LBAs from the failed NAND die and recovering data from the failed LBAs. Furthermore, reparo ensures no negative post-recovery impact on the performance and lifetime of the repaired SSD. Experimental results using 32-TB enterprise SSDs show that reparo can recover from a NAND die failure about 57 times faster than the existing rebuild method while little degradation on the SSD performance and lifetime is observed after recovery.


Sign in / Sign up

Export Citation Format

Share Document