Scheduling and Access Control for Wireless Connections with Throughput Guarantees

Author(s):  
Peifang Zhang ◽  
Scott Jordan

Emerging wideband code division multiple access (WCDMA) data services will likely require resource allocation to ensure that throughput targets are met. Scheduling and access control can both be key components in this task. In this chapter, we introduce a two-layer scheduler and connection access controller that attempts to balance efficiency with fairness. We first propose a scheduler that takes advantage of variations in the wireless channel—both channel fluctuations in time for each user, and channel variations among multiple users at a particular time. By mixing a max-min policy with a policy of serving users with relatively good channels, the scheduler can achieve individual average throughput targets in a manner that encourages system efficiency. We then propose a two-layer algorithm that offers targeted throughput for interactive nomadic data streams, such as video or music streaming. The design purpose is to provide users with service differentiation, which lays the groundwork for network optimization in terms of capacity or utility, and can be easily extended to revenue maximization. Upon the request of a data stream connection, a target throughput is negotiated between the user and the network/base station. The network attempts to achieve the throughput targets over the duration of each individual connection by maximizing a system objective based on users’ satisfaction that is represented by a utility function. We assume that a users’ utility function depends not only on the throughput target but also on final achieved throughput. The algorithm integrates connection access control and resource allocation per connection request with rate scheduling on a per frame basis adaptive to slow fading. Through numerical analysis, the proposed joint scheduler and connection access controller is shown to achieve the design goals.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 539
Author(s):  
Saleh Seyedzadeh ◽  
Andrew Agapiou ◽  
Majid Moghaddasi ◽  
Milan Dado ◽  
Ivan Glesk

The growing demand for extensive and reliable structural health monitoring resulted in the development of advanced optical sensing systems (OSS) that in conjunction with wireless optical networks (WON) are capable of extending the reach of optical sensing to places where fibre provision is not feasible. To support this effort, the paper proposes a new type of a variable weight code called multiweight zero cross-correlation (MW-ZCC) code for its application in wireless optical networks based optical code division multiple access (WON-OCDMA). The code provides improved quality of service (QoS) and better support for simultaneous transmission of video surveillance, comms and sensor data by reducing the impact of multiple access interference (MAI). The MW-ZCC code’s power of two code-weight properties provide enhanced support for the needed service differentiation provisioning. The performance of this novel code has been studied by simulations. This investigation revealed that for a minimum allowable bit error rate of 10−3, 10−9 and 10−12 when supporting triple-play services (sensing, datacomms and video surveillance, respectively), the proposed WON-OCDMA using MW-ZCC codes could support up to 32 simultaneous services over transmission distances up to 32 km in the presence of moderate atmospheric turbulence.


Author(s):  
Rashid Ali Fayadh ◽  
Mousa K. Wali ◽  
Mehdi F. Bonneya

<p>Since the wireless systems are working under nature environments and influenced by turbulence, weather in Iraq that leads to extended amount of fading signal, dissipation or attenuation. Basic “hybrid Subcarrier Multiplying Spectral Amplitude Coding (SCM-SAC) of Optical Code Division Multiple Access (OCDMA)" indoor or outdoor optical system depends on generally “Multi-Diagonal (MD)" security code by using optical space known as “Free Space Optic (FSO)" that was proposed in this work. It is found that the mention hybrid wireless systems can be used in operating mesh networks. The main proposed idea of hybrid optical technique was analyzed and simulated by normally taking into simulation account that the directly effecting by rain and haze attenuations. In addition, there are mention and description for atmospheric effects, FSO mesh network, modulation scheme, simulation, and the data security. From simulation results, the hybrid system using MD code produces reduced “bit-error rate (BER)" at heavy storm rain to distance or range of 500 m and at drizzle rain up to 2500 m range. And also investigates the performance of using the proposed system with radio over fiber (RoF) for UWB signals through indoor propagation in building applications of wireless channel.</p>


2021 ◽  
Author(s):  
Eman Mohamed Elbakary ◽  
Walid El-Shafai ◽  
s El-Rabaie ◽  
o Zahran ◽  
M El-Halawany ◽  
...  

Abstract Abstract Three-Dimensional Video (3DV) communication through wireless channels suffers from bit-streams losses. Therefore, the efficient performance of 3DV transmission techniques over wireless networks is a considerable hot research topic. A high compression ratio must be introduced to meet future bandwidth restriction for optimized 3DV transmission. Unfortunately, the compressed 3DV bit-streams are more sensitive and vulnerable to packet losses. In this paper, we propose the application of chaotic Baker interleaving with equalization and convolution coding for efficient Discrete Wavelet Transform (DWT)-based Singular Value Decomposition (SVD) watermarked 3DV transmission over a Multi-Carrier Code Division Multiple Accesses (MC-CDMA) wireless channel. Firstly, the compressed 3DV frames are watermarking using the DWT+SVD watermarking process. After that, chaotic interleaving is applied to minimize the channel effects on the transported bit-streams and it also adds an encryption to the transported 3DV frames. To test the performance of the proposed hybrid techniques; several experiments on different (DWT+SVD) watermarked 3DV frames have been tested. The experimental results confirm that the received watermarked 3DV frames still have high Peak Signal-to-Noise Ratios (PSNRs) and efficient watermark extraction is possible.


2013 ◽  
Vol 19 (6) ◽  
Author(s):  
Z. S. Velickovic ◽  
M. Jevtovic ◽  
V. Pavlovic

Author(s):  
Katyayani Kashayp ◽  
Kandarpa Kumar Sarma ◽  
Manash Pratim Sarma

Spread spectrum modulation (SSM) finds important place in wireless communication primarily due to its application in Code Division Multiple Access (CDMA) and its effectiveness in channels fill with noise like signals. One of the critical issues in such modulation is the generation of spreading sequence. This chapter presents a design of chaotic spreading sequence for application in a Direct Sequence Spread Spectrum (DS SS) system configured for a faded wireless channel. Enhancing the security of data transmission is a prime issue which can better be addressed with a chaotic sequence. Generation and application of chaotic sequence is done and a comparison with Gold sequence is presented which clearly indicates achieving better performance with simplicity of design. Again a multiplierless logistic map sequence is generated for lower power requirements than the existing one. The primary blocks of the system are implemented using Verilog and the performances noted. Experimental results show that the proposed system is an efficient sequence generator suitable for wideband systems demonstrating lower BER levels, computational time and power requirements compared to traditional LFSR based approaches.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092577 ◽  
Author(s):  
Shahwar Ali ◽  
A Humaria ◽  
M Sher Ramzan ◽  
Imran Khan ◽  
Syed M Saqlain ◽  
...  

In wireless sensor networks, the sensors transfer data through radio signals to a remote base station. Sensor nodes are used to sense environmental conditions such as temperature, strain, humidity, sound, vibration, and position. Data security is a major issue in wireless sensor networks since data travel over the naturally exposed wireless channel where malicious attackers may get access to critical information. The sensors in wireless sensor networks are resource-constrained devices whereas the existing data security approaches have complex security mechanisms with high computational and response times affecting the network lifetime. Furthermore, existing systems, such as secure efficient encryption algorithm, use the Diffie–Hellman approach for key generation and exchange; however, Diffie–Hellman is highly vulnerable to the man-in-the-middle attack. This article introduces a data security approach with less computational and response times based on a modified version of Diffie–Hellman. The Diffie–Hellman has been modified to secure it against attacks by generating a hash of each value that is transmitted over the network. The proposed approach has been analyzed for security against various attacks. Furthermore, it has also been analyzed in terms of encryption/decryption time, computation time, and key generation time for different sizes of data. The comparative analysis with the existing approaches shows that the proposed approach performs better in most of the cases.


Sign in / Sign up

Export Citation Format

Share Document