Computerised Decision Support for Women's Health Informatics

Author(s):  
David Parry

Decision analysis techniques attempt to utilize mathematical data about outcomes and preferences to help people make optimal decisions. The increasing uses of computerized records and powerful computers have made these techniques much more accessible and usable. The partnership between women and clinicians can be enhanced by sharing information, knowledge, and the decision making process in this way. Other techniques for assisting with decision making, such as learning from data via neural networks or other machine learning approaches may offer increased value. Rules learned from such approaches may allow the development of expert systems that actually take over some of the decision making role, although such systems are not yet in widespread use.

2012 ◽  
pp. 1404-1416 ◽  
Author(s):  
David Parry

Decision analysis techniques attempt to utilize mathematical data about outcomes and preferences to help people make optimal decisions. The increasing uses of computerized records and powerful computers have made these techniques much more accessible and usable. The partnership between women and clinicians can be enhanced by sharing information, knowledge, and the decision making process in this way. Other techniques for assisting with decision making, such as learning from data via neural networks or other machine learning approaches may offer increased value. Rules learned from such approaches may allow the development of expert systems that actually take over some of the decision making role, although such systems are not yet in widespread use.


2011 ◽  
pp. 1272-1285
Author(s):  
David Parry

Decision analysis techniques attempt to utilize mathematical data about outcomes and preferences to help people make optimal decisions. The increasing uses of computerized records and powerful computers have made these techniques much more accessible and usable. The partnership between women and clinicians can be enhanced by sharing information, knowledge, and the decision making process in this way. Other techniques for assisting with decision making, such as learning from data via neural networks or other machine learning approaches may offer increased value. Rules learned from such approaches may allow the development of expert systems that actually take over some of the decision making role, although such systems are not yet in widespread use.


2019 ◽  
Vol 16 (161) ◽  
pp. 20190410
Author(s):  
Mi Kieu Trinh ◽  
Matthew T. Wayland ◽  
Sudhakaran Prabakaran

There is still a significant gap between our understanding of neural circuits and the behaviours they compute—i.e. the computations performed by these neural networks (Carandini 2012 Nat. Neurosci. 15 , 507–509. ( doi:10.1038/nn.3043 )). Cellular decision-making processes, learning, behaviour and memory formation—all that have been only associated with animals with neural systems—have also been observed in many unicellular aneural organisms, namely Physarum , Paramecium and Stentor (Tang & Marshall2018 Curr. Biol. 28 , R1180–R1184. ( doi:10.1016/j.cub.2018.09.015 )). As these are fully functioning organisms, yet being unicellular, there is a much better chance to elucidate the detailed mechanisms underlying these learning processes in these organisms without the complications of highly interconnected neural circuits. An intriguing learning behaviour observed in Stentor roeseli (Jennings 1902 Am. J. Physiol. Legacy Content 8 , 23–60. ( doi:10.1152/ajplegacy.1902.8.1.23 )) when stimulated with carmine has left scientists puzzled for more than a century. So far, none of the existing learning paradigm can fully encapsulate this particular series of five characteristic avoidance reactions. Although we were able to observe all responses described in the literature and in a previous study (Dexter et al . 2019), they do not conform to any particular learning model. We then investigated whether models inferred from machine learning approaches, including decision tree, random forest and feed-forward artificial neural networks could infer and predict the behaviour of S. roeseli . Our results showed that an artificial neural network with multiple ‘computational’ neurons is inefficient at modelling the single-celled ciliate's avoidance reactions. This has highlighted the complexity of behaviours in aneural organisms. Additionally, this report will also discuss the significance of elucidating molecular details underlying learning and decision-making processes in these unicellular organisms, which could offer valuable insights that are applicable to higher animals.


Author(s):  
Peter Kokol ◽  
Jan Jurman ◽  
Tajda Bogovič ◽  
Tadej Završnik ◽  
Jernej Završnik ◽  
...  

Cardiovascular diseases are one of the leading global causes of death. Following the positive experiences with machine learning in medicine we performed a study in which we assessed how machine learning can support decision making regarding coronary artery diseases. While a plethora of studies reported high accuracy rates of machine learning algorithms (MLA) in medical applications, the majority of the studies used the cleansed medical data bases without the presence of the “real world noise.” Contrary, the aim of our study was to perform machine learning on the routinely collected Anonymous Cardiovascular Database (ACD), extracted directly from a hospital information system of the University Medical Centre Maribor). Many studies used tens of different machine learning approaches with substantially varying results regarding accuracy (ACU), hence they were not usable as a base to validate the results of our study. Thus, we decided, that our study will be performed in the 2 phases. During the first phase we trained the different MLAs on a comparable University of California Irvine UCI Heart Disease Dataset. The aim of this phase was first to define the “standard” ACU values and second to reduce the set of all MLAs to the most appropriate candidates to be used on the ACD, during the second phase. Seven MLAs were selected and the standard ACUs for the 2-class diagnosis were 0.85. Surprisingly, the same MLAs achieved the ACUs around 0.96 on the ACD. A general comparison of both databases revealed that different machine learning algorithms performance differ significantly. The accuracy on the ACD reached the highest levels using decision trees and neural networks while Liner regression and AdaBoost performed best in UCI database. This might indicate that decision trees based algorithms and neural networks are better in coping with real world not “noise free” clinical data and could successfully support decision making concerned with coronary diseasesmachine learning.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Mona Riabacke ◽  
Mats Danielson ◽  
Love Ekenberg

Comparatively few of the vast amounts of decision analytical methods suggested have been widely spread in actual practice. Some approaches have nevertheless been more successful in this respect than others. Quantitative decision making has moved from the study of decision theory founded on a single criterion towards decision support for more realistic decision-making situations with multiple, often conflicting, criteria. Furthermore, the identified gap between normative and descriptive theories seems to suggest a shift to more prescriptive approaches. However, when decision analysis applications are used to aid prescriptive decision-making processes, additional demands are put on these applications to adapt to the users and the context. In particular, the issue of weight elicitation is crucial. There are several techniques for deriving criteria weights from preference statements. This is a cognitively demanding task, subject to different biases, and the elicited values can be heavily dependent on the method of assessment. There have been a number of methods suggested for assessing criteria weights, but these methods have properties which impact their applicability in practice. This paper provides a survey of state-of-the-art weight elicitation methods in a prescriptive setting.


2020 ◽  
Vol 25 (2) ◽  
pp. 7-13
Author(s):  
Zhangozha A.R. ◽  

On the example of the online game Akinator, the basic principles on which programs of this type are built are considered. Effective technics have been proposed by which artificial intelligence systems can build logical inferences that allow to identify an unknown subject from its description (predicate). To confirm the considered hypotheses, the terminological analysis of definition of the program "Akinator" offered by the author is carried out. Starting from the assumptions given by the author's definition, the article complements their definitions presented by other researchers and analyzes their constituent theses. Finally, some proposals are made for the next steps in improving the program. The Akinator program, at one time, became one of the most famous online games using artificial intelligence. And although this was not directly stated, it was clear to the experts in the field of artificial intelligence that the program uses the techniques of expert systems and is built on inference rules. At the moment, expert systems have lost their positions in comparison with the direction of neural networks in the field of artificial intelligence, however, in the case considered in the article, we are talking about techniques using both directions – hybrid systems. Games for filling semantics interact with the user, expanding their semantic base (knowledge base) and use certain strategies to achieve the best result. The playful form of such semantics filling programs is beneficial for researchers by involving a large number of players. The article examines the techniques used by the Akinator program, and also suggests possible modifications to it in the future. This study, first of all, focuses on how the knowledge base of the Akinator program is built, it consists of incomplete sets, which can be filled and adjusted as a result of further iterations of the program launches. It is important to note our assumption that the order of questions used by the program during the game plays a key role, because it determines its strategy. It was identified that the program is guided by the principles of nonmonotonic logic – the assumptions constructed by the program are not final and can be rejected by it during the game. The three main approaches to acquisite semantics proposed by Jakub Šimko and Mária Bieliková are considered, namely, expert work, crowdsourcing and machine learning. Paying attention to machine learning, the Akinator program using machine learning to build an effective strategy in the game presents a class of hybrid systems that combine the principles of two main areas in artificial intelligence programs – expert systems and neural networks.


2019 ◽  
Vol 28 (01) ◽  
pp. 027-034 ◽  
Author(s):  
Laszlo Balkanyi ◽  
Ronald Cornet

Introduction: Artificial intelligence (AI) is widespread in many areas, including medicine. However, it is unclear what exactly AI encompasses. This paper aims to provide an improved understanding of medical AI and its constituent fields, and their interplay with knowledge representation (KR). Methods: We followed a Wittgensteinian approach (“meaning by usage”) applied to content metadata labels, using the Medical Subject Headings (MeSH) thesaurus to classify the field. To understand and characterize medical AI and the role of KR, we analyzed: (1) the proportion of papers in MEDLINE related to KR and various AI fields; (2) the interplay among KR and AI fields and overlaps among the AI fields; (3) interconnectedness of fields; and (4) phrase frequency and collocation based on a corpus of abstracts. Results: Data from over eighty thousand papers showed a steep, six-fold surge in the last 30 years. This growth happened in an escalating and cascading way. A corpus of 246,308 total words containing 21,842 unique words showed several hundred occurrences of notions such as robotics, fuzzy logic, neural networks, machine learning and expert systems in the phrase frequency analysis. Collocation analysis shows that fuzzy logic seems to be the most often collocated notion. Neural networks and machine learning are also used in the conceptual neighborhood of KR. Robotics is more isolated. Conclusions: Authors note an escalation of published AI studies in medicine. Knowledge representation is one of the smaller areas, but also the most interconnected, and provides a common cognitive layer for other areas.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Thais Cristina Sampaio Machado ◽  
Plácido Rogerio Pinheiro ◽  
Isabelle Tamanini

The decision making is present in every activity of the human world, either in simple day-by-day problems or in complex situations inside of an organization. Sometimes emotions and reasons become hard to separate; therefore decision support methods were created to help decision makers to make complex decisions, and Decision Support Systems (DSS) were created to aid the application of such methods. The paper presents the development of a new tool, which reproduces the procedure to apply the Verbal Decision Analysis (VDA) methodology ORCLASS. The tool, called OrclassWeb, is software that supports the process of the mentioned DSS method and the paper provides proof of concepts, that which presents its reliability with ORCLASS.


Author(s):  
Manoj A. Thomas ◽  
Diya Suzanne Abraham ◽  
Dapeng Liu

Translational research (TR) is the harnessing of knowledge from basic science and clinical research to advance healthcare. As a sister discipline, translational informatics (TI) concerns the application of informatics theories, methods, and frameworks to TR. This chapter builds upon TR concepts and aims to advance the use of machine learning (ML) and data analytics for improving clinical decision support. A federated machine learning (FML) architecture is described to aggregate multiple ML endpoints, and intermediate data analytic processes and products to output high quality knowledge discovery and decision making. The proposed architecture is evaluated for its operational performance based on three propositions, and a case for clinical decision support in the prediction of adult Sepsis is presented. The chapter illustrates contributions to the advancement of FML and TI.


Sign in / Sign up

Export Citation Format

Share Document