Finite Element Analysis and its Application in Dental Implant Research

Author(s):  
Antonios Zampelis ◽  
George Tsamasphyros

Biomechanical research has gained recognition in medical sciences. Osseointegrated dental implants, being medical devices functioning under constant load, are one of the focal points of such research. One of the most powerful tools for biomechanical research on dental implants is finite element analysis (FEA). This chapter will cope with basic elements of FEA research, the mechanical properties of bone and the various parts of dental implants, as well as delve into published literature on the subject.

Author(s):  
Dinc¸er Bozkaya ◽  
Sinan Mu¨ftu¨

The long-term success of dental implants depends, in part, on the stress distribution created in the bone, when the implant is loaded by biting forces. In this presentation, we present our findings on the stress distribution characteristics of a dental implant by varying bone mechanical properties surrounding the implant.


Author(s):  
Luiz Bassi Junior ◽  
Rafael Oliveira de Souza Silva ◽  
Victor Hugo Dias dos Santos ◽  
Abner da Rocha Lourenço ◽  
Paulo Vinicius Trevizoli ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


2015 ◽  
Vol 83 ◽  
pp. 75-84 ◽  
Author(s):  
S. Haroush ◽  
E. Priel ◽  
D. Moreno ◽  
A. Busiba ◽  
I. Silverman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document