Big Data and Digital Analytics

2022 ◽  
pp. 571-589
Author(s):  
Sumathi Doraikannan ◽  
Prabha Selvaraj

Data becomes big data when then the size of data exceeds the ability of our IT systems in terms of 3Vs (volume, velocity, and variety). When the data sets are large and complex, it becomes a great difficult task for handling such voluminous data. This chapter will provide a detailed knowledge of the major concepts and components of big data and also the transformation of big data in to business operations. Collection and storage of big data will not help out in creation of business values. Values and importance are created once when the action starts on data by performing an analysis. Hence, this chapter provides a view on various kinds of analysis that can be done with big data and also the differences between traditional analytics and big data analytics. The transformation of digital data into business values could be in terms of reports, research analyses, recommendations, predictions, and optimizations. In addition to the concept of big data, this chapter discuss about the basic concepts of digital analytics, methods, and techniques for digital analysis.

Author(s):  
Sumathi Doraikannan ◽  
Prabha Selvaraj

Data becomes big data when then the size of data exceeds the ability of our IT systems in terms of 3Vs (volume, velocity, and variety). When the data sets are large and complex, it becomes a great difficult task for handling such voluminous data. This chapter will provide a detailed knowledge of the major concepts and components of big data and also the transformation of big data in to business operations. Collection and storage of big data will not help out in creation of business values. Values and importance are created once when the action starts on data by performing an analysis. Hence, this chapter provides a view on various kinds of analysis that can be done with big data and also the differences between traditional analytics and big data analytics. The transformation of digital data into business values could be in terms of reports, research analyses, recommendations, predictions, and optimizations. In addition to the concept of big data, this chapter discuss about the basic concepts of digital analytics, methods, and techniques for digital analysis.


Author(s):  
Amita S. Pradhan ◽  
Swapnaja Rajesh Hiray

Information communication technology is growing at a faster speed and diversified way. Cloud computing, internet of things, 5G, and such technologies are gearing-up and resulting in proliferation of data. Data is a raw information and it has created a big data. To handle such data, big data techniques are emerging. Library and information science is a big-way service profession that mediates between the data/information and the users, letting them be students, researchers, technocrats. Big data, mostly digital data, is being generated through multiple on-line surveys and repositories. Digital and social media is the main source of generating such data. Analyzing such data according to user needs is a huge task. This is the challenge now a days to organize the data explosion, specially the volume and variety of data. Big data analytics proves to be a major help in organizing and fetching data sets pertaining to user query. The authors, in this chapter, deal with four major services of libraries, wherein time efficiency can be achieved through big data analytics. Authors have focused on thrust areas of library and information science and indicate the benefits of big data analytics for service efficiency.


2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Tiko Iyamu

Background: Over the years, big data analytics has been statically carried out in a programmed way, which does not allow for translation of data sets from a subjective perspective. This approach affects an understanding of why and how data sets manifest themselves into various forms in the way that they do. This has a negative impact on the accuracy, redundancy and usefulness of data sets, which in turn affects the value of operations and the competitive effectiveness of an organisation. Also, the current single approach lacks a detailed examination of data sets, which big data deserve in order to improve purposefulness and usefulness.Objective: The purpose of this study was to propose a multilevel approach to big data analysis. This includes examining how a sociotechnical theory, the actor network theory (ANT), can be complementarily used with analytic tools for big data analysis.Method: In the study, the qualitative methods were employed from the interpretivist approach perspective.Results: From the findings, a framework that offers big data analytics at two levels, micro- (strategic) and macro- (operational) levels, was developed. Based on the framework, a model was developed, which can be used to guide the analysis of heterogeneous data sets that exist within networks.Conclusion: The multilevel approach ensures a fully detailed analysis, which is intended to increase accuracy, reduce redundancy and put the manipulation and manifestation of data sets into perspectives for improved organisations’ competitiveness.


Author(s):  
Aakriti Shukla ◽  
◽  
Dr Damodar Prasad Tiwari ◽  

Dimension reduction or feature selection is thought to be the backbone of big data applications in order to improve performance. Many scholars have shifted their attention in recent years to data science and analysis for real-time applications using big data integration. It takes a long time for humans to interact with big data. As a result, while handling high workload in a distributed system, it is necessary to make feature selection elastic and scalable. In this study, a survey of alternative optimizing techniques for feature selection are presented, as well as an analytical result analysis of their limits. This study contributes to the development of a method for improving the efficiency of feature selection in big complicated data sets.


Author(s):  
Pethuru Raj

The implications of the digitization process among a bevy of trends are definitely many and memorable. One is the abnormal growth in data generation, gathering, and storage due to a steady increase in the number of data sources, structures, scopes, sizes, and speeds. In this chapter, the author shows some of the impactful developments brewing in the IT space, how the tremendous amount of data getting produced and processed all over the world impacts the IT and business domains, how next-generation IT infrastructures are accordingly getting refactored, remedied, and readied for the impending big data-induced challenges, how likely the move of the big data analytics discipline towards fulfilling the digital universe requirements of extracting and extrapolating actionable insights for the knowledge-parched is, and finally, the establishment and sustenance of the dreamt smarter planet.


Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


Author(s):  
Nitigya Sambyal ◽  
Poonam Saini ◽  
Rupali Syal

The world is increasingly driven by huge amounts of data. Big data refers to data sets that are so large or complex that traditional data processing application software are inadequate to deal with them. Healthcare analytics is a prominent area of big data analytics. It has led to significant reduction in morbidity and mortality associated with a disease. In order to harness full potential of big data, various tools like Apache Sentry, BigQuery, NoSQL databases, Hadoop, JethroData, etc. are available for its processing. However, with such enormous amounts of information comes the complexity of data management, other big data challenges occur during data capture, storage, analysis, search, transfer, information privacy, visualization, querying, and update. The chapter focuses on understanding the meaning and concept of big data, analytics of big data, its role in healthcare, various application areas, trends and tools used to process big data along with open problem challenges.


Author(s):  
Sreenu G. ◽  
M.A. Saleem Durai

Advances in recent hardware technology have permitted to document transactions and other pieces of information of everyday life at an express pace. In addition of speed up and storage capacity, real-life perceptions tend to transform over time. However, there are so much prospective and highly functional values unseen in the vast volume of data. For this kind of applications conventional data mining is not suitable, so they should be tuned and changed or designed with new algorithms. Big data computing is inflowing to the category of most hopeful technologies that shows the way to new ways of thinking and decision making. This epoch of big data helps users to take benefit out of all available data to gain more precise systematic results or determine latent information, and then make best possible decisions. Depiction from a broad set of workloads, the author establishes a set of classifying measures based on the storage architecture, processing types, processing techniques and the tools and technologies used.


Author(s):  
Abid Ali ◽  
Nursyarizal Mohd Nor ◽  
Taib Ibrahim ◽  
Mohd Fakhizan Romlie ◽  
Kishore Bingi

This chapter proposes Big Data Analytics for the sizing and locating of solar photovoltaic farms to reduce the total energy loss in distribution networks. The Big Data Analytics, which uses the advance statistical and computational tools for the handling of large data sets, has been adopted for modeling the 15 years of solar weather data. Total Power Loss Index (TPLI) is formulated as the main objective function for the optimization problem and meanwhile bus voltage deviations and penetrations of the PV farms are calculated. To solve the optimization problem, this study adopts the Mixed Integer Optimization using Genetic Algorithm (MIOGA) technique. By considering different time varying voltage dependent load models, the proposed algorithm is applied on IEEE 33 bus and IEEE 69 bus test distribution networks and optimum results are acquired. From the results, it is revealed that compared to single PV farm, the integration of two PV farms reduced more energy loss and reduced the total size of PV farms. Big Data Analytics is found very effective for the storing, handling, processing and the visualizing of the weather Big Data.


Sign in / Sign up

Export Citation Format

Share Document