Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas

2022 ◽  
pp. 578-602
Author(s):  
Hanane Boutaj ◽  
Aicha Moumni ◽  
Oumayma Nassiri ◽  
Abdelhak Ouled Aitouna

Considerable attention has been paid to climate change and its impacts on biodiversity. The climate change has caused several problems such as continuous ecosystem degradation and a resultant biodiversity decline. In addition, climate warming has a range of indirect effects through changes in vegetation type level and sea that affect physical and biological systems. This has also led to changes in the distribution of species, as well as reductions in the size of populations, or even local extinctions of these populations. Moreover, many species are disappearing with time due to climate change combined with the emergence of disease that develops and increases with time. These problems affect different biodiversity components that are close to collapse. This chapter explored the richness of biodiversity in arid and semi-arid zones. It is also illuminates the effects of climate change on distribution of biodiversity. The authors highlight the responses of biodiversity under climate change, in terms of species extinction, biodiversity loss, and the impacts of climate change to ecological tourism. Finally, the authors show how biodiversity can overcome the effect of climate change, by developing some systems that allow to them to survive and conservation of species and ecosystems.

Author(s):  
Hanane Boutaj ◽  
Aicha Moumni ◽  
Oumayma Nassiri ◽  
Abdelhak Ouled Aitouna

Considerable attention has been paid to climate change and its impacts on biodiversity. The climate change has caused several problems such as continuous ecosystem degradation and a resultant biodiversity decline. In addition, climate warming has a range of indirect effects through changes in vegetation type level and sea that affect physical and biological systems. This has also led to changes in the distribution of species, as well as reductions in the size of populations, or even local extinctions of these populations. Moreover, many species are disappearing with time due to climate change combined with the emergence of disease that develops and increases with time. These problems affect different biodiversity components that are close to collapse. This chapter explored the richness of biodiversity in arid and semi-arid zones. It is also illuminates the effects of climate change on distribution of biodiversity. The authors highlight the responses of biodiversity under climate change, in terms of species extinction, biodiversity loss, and the impacts of climate change to ecological tourism. Finally, the authors show how biodiversity can overcome the effect of climate change, by developing some systems that allow to them to survive and conservation of species and ecosystems.


2012 ◽  
Vol 4 (6) ◽  
pp. 1336 ◽  
Author(s):  
Daniele Cesano ◽  
Emilio Lèbre La Rovere ◽  
Martin Obermaier ◽  
Thais Corral ◽  
Laise Santos da Silva ◽  
...  

Este artigo descreve a experiência da coalizão Adapta Sertão na experimentação e disseminação de sistemas produtivos que possam tornar o agricultor familiar do Semiárido mais resiliente aos impactos da variação climática atual e da mudança do clima no futuro. Durante as experimentações, a coalizão teve que enfrentar várias barreiras ligadas à falta de integração entre políticas públicas existentes e projetos pilotos em comunidades locais. Hoje, a adaptação à mudança do clima não está sendo considerada na implementação de obras hídricas de pequeno e médio porte, que são de grande importância porque, geralmente, conseguem beneficiar as faixas de população mais pobres e mais suscetíveis aos impactos climáticos. As experiências mostram que é preciso desenvolver, com urgência, políticas públicas inovadoras que consigam integrar o acesso à água com a disseminação de tecnologias de adaptação e de sistemas produtivos mais resilientes à seca.  Palavras - chave: medidas de adaptação, agricultura familiar, semiárido, tecnologia.  The experience of the Adapta Sertão Coalition in Disseminating Climate Change Adaptation Technologies and Strategies for Family Farmers in Semi Arid Brazil  ABSTRACTThis paper describes the experience of the Adapta Sertão coalition in testing and experimenting production systems that have the potential to make small farmers of semi-arid Brazil more resilient to current and future climate change impacts. During the different testing, the coalition had to overcome several barriers linked to a lack of integration between current public policies. For example, today climate change is not considered in the design and implementation of small and medium hydraulic infrastructures. This limits the benefits to the target groups (small farmers) that are more likely to be affected by climate change. The experiences show that it is urgent and necessary to develop public policies to better integrate access to water, dissemination of climate resilient technologies and implementation of production systems more adequate to the semi arid conditions.  Keywords: adaptation measures, family farming, semi-arid, technology.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrew D. Richardson ◽  
Koen Hufkens ◽  
Tom Milliman ◽  
Donald M. Aubrecht ◽  
Min Chen ◽  
...  

Abstract Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including “canopy greenness”, processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the “greenness rising” and end of the “greenness falling” stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.


Biology ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 199 ◽  
Author(s):  
Konstantinos Kougioumoutzis ◽  
Ioannis P. Kokkoris ◽  
Maria Panitsa ◽  
Panayiotis Trigas ◽  
Arne Strid ◽  
...  

Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.


2019 ◽  
Vol 26 (7) ◽  
pp. 6745-6757 ◽  
Author(s):  
Asmat Ullah ◽  
Ishfaq Ahmad ◽  
Ashfaq Ahmad ◽  
Tasneem Khaliq ◽  
Umer Saeed ◽  
...  

2020 ◽  
Vol 117 (8) ◽  
pp. 4211-4217 ◽  
Author(s):  
Cristian Román-Palacios ◽  
John J. Wiens

Climate change may be a major threat to biodiversity in the next 100 years. Although there has been important work on mechanisms of decline in some species, it generally remains unclear which changes in climate actually cause extinctions, and how many species will likely be lost. Here, we identify the specific changes in climate that are associated with the widespread local extinctions that have already occurred. We then use this information to predict the extent of future biodiversity loss and to identify which processes may forestall extinction. We used data from surveys of 538 plant and animal species over time, 44% of which have already had local extinctions at one or more sites. We found that locations with local extinctions had larger and faster changes in hottest yearly temperatures than those without. Surprisingly, sites with local extinctions had significantly smaller changes in mean annual temperatures, despite the widespread use of mean annual temperatures as proxies for overall climate change. Based on their past rates of dispersal, we estimate that 57–70% of these 538 species will not disperse quickly enough to avoid extinction. However, we show that niche shifts appear to be far more important for avoiding extinction than dispersal, although most studies focus only on dispersal. Specifically, considering both dispersal and niche shifts, we project that only 16–30% of these 538 species may go extinct by 2070. Overall, our results help identify the specific climatic changes that cause extinction and the processes that may help species to survive.


Ground Water ◽  
2011 ◽  
Vol 50 (4) ◽  
pp. 585-597 ◽  
Author(s):  
Hoori Ajami ◽  
Thomas Meixner ◽  
Francina Dominguez ◽  
James Hogan ◽  
Thomas Maddock

2021 ◽  
Author(s):  
Lewis Ellison

<p>Phenomena such as industrialisation and urbanisation </p><p>are associated with the built environment. Both contribute to </p><p>pollution of urban soil, water and air in various ways. This in turn </p><p>contributes in part to climate change and biodiversity loss. It </p><p>is therefore the responsibility of the built environment, and the </p><p>professionals associated with its design and functioning, to </p><p>remediate the aforementioned effects. </p><p>This research investigates the spatial arrangement of </p><p>bioremediation techniques (the process of using fungus, </p><p>bacteria, and plants to break down and purify environmental </p><p>pollutants) within architecture in order to remediate brownfield </p><p>sites to a state where they contribute to a regenerative built </p><p>environment. </p><p>This investigation utilises a design-led research approach </p><p>of examining the spatial arrangement of bioremediation </p><p>techniques within architecture and proposes a series of design </p><p>interventions at one of New Zealand’s most contaminated </p><p>sites. This research proposes practical methods of applying </p><p>restoration design to remediate brownfield sites to move </p><p>towards a regenerative development model. The land and </p><p>waterways that make up brownfield sites should be celebrated </p><p>for their ecological significance, and remediated, rather than </p><p>ignored so as to build positive human-nature relationships. </p><p>Research findings include that bioremediation and </p><p>architecture cannot exist separately if brownfield site </p><p>remediation and development is to contribute to a regenerative </p><p>built environment. It is critical to use architecture itself as one </p><p>means of educating users about the ecological processes </p><p>of brownfield site bioremediation. This is important in order </p><p>to establish a stewardship role within individuals and local </p><p>communities as a way to work towards the protection and </p><p>successful restoration of these degraded sites. This research </p><p>also found that the restoration of brownfield sites towards </p><p>regenerative development requires architecture and built </p><p>environment infrastructure to be adaptive to future climate </p><p>change conditions. The bioremediation techniques examined </p><p>in this research could be used to retrofit existing buildings and </p><p>designed into new additions and/or retrofits so that architecture </p><p>can adapt to climate change impacts, particularly sea-level rise </p><p>and increased storm surge.</p>


Sign in / Sign up

Export Citation Format

Share Document