Evaluation of a Suitable Material for Soft Actuator Through Experiments and FE Simulations

2022 ◽  
pp. 339-353
Author(s):  
Elango Natarajan ◽  
Muhammad Rusydi Muhammad Razif ◽  
AAM Faudzi ◽  
Palanikumar K.

Soft actuators are generally built to achieve extension, contraction, curling, or bending motions needed for robotic or medical applications. It is prepared with a cylindrical tube, braided with fibers that restrict the radial motion and produce the extension, contraction, or bending. The actuation is achieved through the input of compressed air with a different pressure. The stiffness of the materials controls the magnitude of the actuation. In the present study, Silastic-P1 silicone RTV and multi-wall carbon nanotubes (MWCNT) with reinforced silicone are considered for the evaluation. The dumbbell samples are prepared from both materials as per ASTM D412-06a (ISO 37) standard and their corresponding tensile strength, elongation at break, and tensile modulus are measured. The Ogden nonlinear material constants of respective materials are estimated and used further in the finite element analysis of extension, contraction, and bending soft actuators. It is observed that silicone RTV is better in high strain and fast response, whereas, silicone/MWCNT is better at achieving high actuation.

Author(s):  
Elango Natarajan ◽  
Muhammad Rusydi Muhammad Razif ◽  
AAM Faudzi ◽  
Palanikumar K.

Soft actuators are generally built to achieve extension, contraction, curling, or bending motions needed for robotic or medical applications. It is prepared with a cylindrical tube, braided with fibers that restrict the radial motion and produce the extension, contraction, or bending. The actuation is achieved through the input of compressed air with a different pressure. The stiffness of the materials controls the magnitude of the actuation. In the present study, Silastic-P1 silicone RTV and multi-wall carbon nanotubes (MWCNT) with reinforced silicone are considered for the evaluation. The dumbbell samples are prepared from both materials as per ASTM D412-06a (ISO 37) standard and their corresponding tensile strength, elongation at break, and tensile modulus are measured. The Ogden nonlinear material constants of respective materials are estimated and used further in the finite element analysis of extension, contraction, and bending soft actuators. It is observed that silicone RTV is better in high strain and fast response, whereas, silicone/MWCNT is better at achieving high actuation.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 780 ◽  
Author(s):  
Myunggi Ji ◽  
Qiang Li ◽  
In Ho Cho ◽  
Jaeyoun Kim

Soft material-based pneumatic microtube actuators are attracting intense interest, since their bending motion is potentially useful for the safe manipulation of delicate biological objects. To increase their utility in biomedicine, researchers have begun to apply shape-engineering to the microtubes to diversify their bending patterns. However, design and analysis of such microtube actuators are challenging in general, due to their continuum natures and small dimensions. In this paper, we establish two methods for rapid design, analysis, and optimization of such complex, shape-engineered microtube actuators that are based on the line-segment model and the multi-segment Euler–Bernoulli’s beam model, respectively, and are less computation-intensive than the more conventional method based on finite element analysis. To validate the models, we first realized multi-segment microtube actuators physically, then compared their experimentally observed motions against those obtained from the models. We obtained good agreements between the three sets of results with their maximum bending-angle errors falling within ±11%. In terms of computational efficiency, our models decreased the simulation time significantly, down to a few seconds, in contrast with the finite element analysis that sometimes can take hours. The models reported in this paper exhibit great potential for rapid and facile design and optimization of shape-engineered soft actuators.


2013 ◽  
Vol 421 ◽  
pp. 23-28
Author(s):  
Xia Zhang ◽  
Quan Yuan ◽  
Jun Zhang ◽  
Xu Huang ◽  
Hua Cong

In order to investigate the effect of suture density on the dynamic behavior of bioprosthetic heart valve with nonlinear material and improve long term durability of bioprosthetic heart valve, we establish the ellipsoidal leaflets and paraboloidal leaflets models via computer aided design. Based on the parametric models of the heart valve, four kinds of suture density (100,70,50 and 35 suture points on the attachment edge of the bioprosthetic heart valve) are analyzed by using finite element method. The finite element analysis results are compared with each valve model. It shows that suture density has a significant effect on the dynamic behavior of the bioprosthetic heart valve, which lead to different stress peak values, different stress distributions and deformation. The finite element analysis of the BHV could provide direct and useful information for the BHV designer.


2019 ◽  
Vol 19 (05) ◽  
pp. 1941001 ◽  
Author(s):  
Matthias Klaerner ◽  
Mario Wuehrl ◽  
Lothar Kroll ◽  
Steffen Marburg

Composite materials offer a high freedom of design with regard to stiffness, strength and damping. In contrast to efficient anisotropic but linear material models, these composites often tend to react nonlinearly. Commonly, such nonlinear material damping models imply frequency and temperature dependency. In addition, some materials show a substantial amplitude sensitivity of the damping. Within this study, metal–plastic composites with highly dissipating shear sensitive cores have been used to experimentally determine the damping values with varying amplitudes. The results show a significance of this parameter already for small deflection within the geometrically linear range. The derived nonlinearity is further described by an exponential approach and parametrized by a regression analysis. Furthermore, the amplitude sensitivity is retraced to the contributions of the layered material by a detailed numerical analysis of the stress states. Therefrom, the mean strain energy density per material is derived as an amplitude criterion for the nonlinear damping model. The resulting model can be further applied to the finite element analysis to improve the determination of vibrations as well as structure borne sound of such acoustically improved materials.


Author(s):  
Hui Zhang ◽  
William G. Davids ◽  
Michael L. Peterson ◽  
Adam Turner ◽  
Christopher Malm

This paper presents a finite element analysis of inflated fabric beams that considers nonlinear material response and shear deformations. Applying the principle of virtual work, we obtain the FEM formulation for inflated fabric beams with material nonlinearity. Comparisons between 4-point bend tests of inflated woven fabric beams and finite element results indicate that the finite element analysis provides good estimates of deflections, and that it is important to incorporate the effects of shear deformation and pressure when predicting inflated fabric beam response.


2013 ◽  
Vol 702 ◽  
pp. 245-252 ◽  
Author(s):  
Hong Gun Kim ◽  
Young Jun Kim ◽  
Hee Jae Shin ◽  
Sun Ho Ko ◽  
Hyun Woo Kim ◽  
...  

Al honeycomb core sandwich composite panels have different core and plate materials. The core is the Al honeycomb core, and the thin plate is GFRP sheets with fibers laminated in the 0°/90° symmetric structure. The Al honeycomb core sandwich composite panel is used for structures, which involve relatively high bending load. Before designing the structures, their stability is evaluated via the finite element analysis. In this study, an analysis method that is closest to the reality was proposed for designing the structures with Al honeycomb core sandwich composite panels. For that purpose, the modulus was reviewed. In the finite element analysis, the tensile modulus is generally used. In the results of this study, however, the tensile modulus led to significant deviations from the test results, whereas the bending modulus led to a closer value to the test results.


2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2001 ◽  
Vol 29 (3) ◽  
pp. 134-154 ◽  
Author(s):  
J. R. Luchini ◽  
M. M. Motil ◽  
W. V. Mars

Abstract This paper discusses the measurement and modeling of tire rolling resistance for a group of radial medium truck tires. The tires were subjected to tread depth modifications by “buffing” the tread surface. The experimental work used the equilibrium test method of SAE J-1269. The finite element analysis (FEA) tire model for tire rolling resistance has been previously presented. The results of the testing showed changes in rolling resistance as a function of tread depth that were inconsistent between tires. Several observations were also inconsistent with published information and common knowledge. Several mechanisms were proposed to explain the results. Additional experiments and models were used to evaluate the mechanisms. Mechanisms that were examined included tire age, surface texture, and tire shape. An explanation based on buffed tread radius, and the resulting changes in footprint stresses, is proposed that explains the observed experimental changes in rolling resistance with tread depth.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


Sign in / Sign up

Export Citation Format

Share Document