Application of Deep Learning for EEG

Author(s):  
Angana Saikia ◽  
Sudip Paul

Deep learning is a relatively new branch of machine learning, which has been used in a variety of biomedical applications. It has been used to analyze different physiological signals and gain better understanding of human physiology for automated diagnosis of abnormal conditions. It is used in the classification of electroencephalography signals. Most of the present research has continued to use manual feature extraction methods followed by a traditional classifier, such as support vector machine or logistic regression. This is largely due to the low number of samples per experiment, high-dimensional nature of the data, and the difficulty in finding appropriate deep learning architectures for classification of EEG signals. One of the challenges in modeling cognitive events from EEG data is finding representations that are invariant to inter- and intra-subject differences as well as the inherent noise associated with EEG data collection. Herein, the authors explore the capabilities of the recent deep learning techniques for modeling cognitive events from EEG data.

2021 ◽  
Author(s):  
P. Sukhetha ◽  
N. Hemalatha ◽  
Raji Sukumar

Abstract Agriculture is one of the important parts of Indian economy. Agricultural field has more contribution towards growth and stability of the nation. Therefore, a current technologies and innovations can help in order to experiment new techniques and methods in the agricultural field. At Present Artificial Intelligence (AI) is one of the main, effective, and widely used technology. Especially, Deep Learning (DL) has numerous functions due to its capability to learn robust interpretations from images. Convolutional Neural Networks (CNN) is the major Deep Learning architecture for image classification. This paper is mainly focus on the deep learning techniques to classify Fruits and Vegetables, the model creation and implementation to identify Fruits and Vegetables on the fruit360 dataset. The models created are Support Vector Machine (SVM), K Nearest Neighbor (KNN), Decision Tree (DT), ResNet Pretrained Model, Convolutional Neural Network (CNN), Multilayer Perceptron (MLP). Among the different models ResNet pretrained Model performed the best with an accuracy of 95.83%.


2021 ◽  
Vol 11 (21) ◽  
pp. 9948
Author(s):  
Amira Echtioui ◽  
Ayoub Mlaouah ◽  
Wassim Zouch ◽  
Mohamed Ghorbel ◽  
Chokri Mhiri ◽  
...  

Recently, Electroencephalography (EEG) motor imagery (MI) signals have received increasing attention because it became possible to use these signals to encode a person’s intention to perform an action. Researchers have used MI signals to help people with partial or total paralysis, control devices such as exoskeletons, wheelchairs, prostheses, and even independent driving. Therefore, classifying the motor imagery tasks of these signals is important for a Brain-Computer Interface (BCI) system. Classifying the MI tasks from EEG signals is difficult to offer a good decoder due to the dynamic nature of the signal, its low signal-to-noise ratio, complexity, and dependence on the sensor positions. In this paper, we investigate five multilayer methods for classifying MI tasks: proposed methods based on Artificial Neural Network, Convolutional Neural Network 1 (CNN1), CNN2, CNN1 with CNN2 merged, and the modified CNN1 with CNN2 merged. These proposed methods use different spatial and temporal characteristics extracted from raw EEG data. We demonstrate that our proposed CNN1-based method outperforms state-of-the-art machine/deep learning techniques for EEG classification by an accuracy value of 68.77% and use spatial and frequency characteristics on the BCI Competition IV-2a dataset, which includes nine subjects performing four MI tasks (left/right hand, feet, and tongue). The experimental results demonstrate the feasibility of this proposed method for the classification of MI-EEG signals and can be applied successfully to BCI systems where the amount of data is large due to daily recording.


Author(s):  
Sameerchand Pudaruth ◽  
Sunjiv Soyjaudah ◽  
Rajendra Gunputh

Laws are often developed in a piecemeal approach and many provisions of similar nature are often found in different legislations. Therefore, there is a need to classify legislations into various legal topics to help legal professionals in their daily activities. In this study, we have experimented with various deep learning architectures for the automatic classification of 490 legislations from the Republic of Mauritius into 30 categories. Our results demonstrate that a Deep Neural Network (DNN) with three hidden layers delivered the best performance compared with other architectures such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). A mean classification accuracy of 60.9% was achieved using DNN, 56.5% for CNN and 33.7% for Long Short-Term Memory (LSTM). Comparisons were also made with traditional machine learning classifiers such as support vector machines and decision trees and it was found that the performance of DNN was superior, by at least 10%, in all runs. Both general pre-trained word embeddings such as Word2vec and domain-specific word embeddings such as Law2vec were used in combination with the above deep learning architectures but Word2vec had the best performance. To our knowledge, this is the first application of deep learning in the categorisation of legislations.


2021 ◽  
Author(s):  
Lekshmi Kalinathan ◽  
Deepika Sivasankaran ◽  
Janet Reshma Jeyasingh ◽  
Amritha Sennappa Sudharsan ◽  
Hareni Marimuthu

Hepatocellular Carcinoma (HCC) proves to be challenging for detection and classification of its stages mainly due to the lack of disparity between cancerous and non cancerous cells. This work focuses on detecting hepatic cancer stages from histopathology data using machine learning techniques. It aims to develop a prototype which helps the pathologists to deliver a report in a quick manner and detect the stage of the cancer cell. Hence we propose a system to identify and classify HCC based on the features obtained by deep learning using pre-trained models such as VGG-16, ResNet-50, DenseNet-121, InceptionV3, InceptionResNet50 and Xception followed by machine learning using support vector machine (SVM) to learn from these features. The accuracy obtained using the system comprised of DenseNet-121 for feature extraction and SVM for classification gives 82% accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Author(s):  
Hamdi Altaheri ◽  
Ghulam Muhammad ◽  
Mansour Alsulaiman ◽  
Syed Umar Amin ◽  
Ghadir Ali Altuwaijri ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 495
Author(s):  
Imayanmosha Wahlang ◽  
Arnab Kumar Maji ◽  
Goutam Saha ◽  
Prasun Chakrabarti ◽  
Michal Jasinski ◽  
...  

This article experiments with deep learning methodologies in echocardiogram (echo), a promising and vigorously researched technique in the preponderance field. This paper involves two different kinds of classification in the echo. Firstly, classification into normal (absence of abnormalities) or abnormal (presence of abnormalities) has been done, using 2D echo images, 3D Doppler images, and videographic images. Secondly, based on different types of regurgitation, namely, Mitral Regurgitation (MR), Aortic Regurgitation (AR), Tricuspid Regurgitation (TR), and a combination of the three types of regurgitation are classified using videographic echo images. Two deep-learning methodologies are used for these purposes, a Recurrent Neural Network (RNN) based methodology (Long Short Term Memory (LSTM)) and an Autoencoder based methodology (Variational AutoEncoder (VAE)). The use of videographic images distinguished this work from the existing work using SVM (Support Vector Machine) and also application of deep-learning methodologies is the first of many in this particular field. It was found that deep-learning methodologies perform better than SVM methodology in normal or abnormal classification. Overall, VAE performs better in 2D and 3D Doppler images (static images) while LSTM performs better in the case of videographic images.


Author(s):  
VLADIMIR NIKULIN ◽  
TIAN-HSIANG HUANG ◽  
GEOFFREY J. MCLACHLAN

The method presented in this paper is novel as a natural combination of two mutually dependent steps. Feature selection is a key element (first step) in our classification system, which was employed during the 2010 International RSCTC data mining (bioinformatics) Challenge. The second step may be implemented using any suitable classifier such as linear regression, support vector machine or neural networks. We conducted leave-one-out (LOO) experiments with several feature selection techniques and classifiers. Based on the LOO evaluations, we decided to use feature selection with the separation type Wilcoxon-based criterion for all final submissions. The method presented in this paper was tested successfully during the RSCTC data mining Challenge, where we achieved the top score in the Basic track.


Author(s):  
Pablo David Minango Negrete ◽  
Yuzo Iano ◽  
Ana Carolina Borges Monteiro ◽  
Reinaldo Padilha França ◽  
Gabriel Gomes de Oliveira ◽  
...  

2020 ◽  
pp. 35
Author(s):  
M. Campos-Taberner ◽  
F.J. García-Haro ◽  
B. Martínez ◽  
M.A. Gilabert

<p class="p1">The use of deep learning techniques for remote sensing applications has recently increased. These algorithms have proven to be successful in estimation of parameters and classification of images. However, little effort has been made to make them understandable, leading to their implementation as “black boxes”. This work aims to evaluate the performance and clarify the operation of a deep learning algorithm, based on a bi-directional recurrent network of long short-term memory (2-BiLSTM). The land use classification in the Valencian Community based on Sentinel-2 image time series in the framework of the common agricultural policy (CAP) is used as an example. It is verified that the accuracy of the deep learning techniques is superior (98.6 % overall success) to that other algorithms such as decision trees (DT), k-nearest neighbors (k-NN), neural networks (NN), support vector machines (SVM) and random forests (RF). The performance of the classifier has been studied as a function of time and of the predictors used. It is concluded that, in the study area, the most relevant information used by the network in the classification are the images corresponding to summer and the spectral and spatial information derived from the red and near infrared bands. These results open the door to new studies in the field of the explainable deep learning in remote sensing applications.</p>


Sign in / Sign up

Export Citation Format

Share Document