Network Attack Detection With SNMP-MIB Using Deep Neural Network

Author(s):  
Mouhammd Sharari Alkasassbeh ◽  
Mohannad Zead Khairallah

Over the past decades, the Internet and information technologies have elevated security issues due to the huge use of networks. Because of this advance information and communication and sharing information, the threats of cybersecurity have been increasing daily. Intrusion Detection System (IDS) is considered one of the most critical security components which detects network security breaches in organizations. However, a lot of challenges raise while implementing dynamics and effective NIDS for unknown and unpredictable attacks. Consider the machine learning approach to developing an effective and flexible IDS. A deep neural network model is proposed to increase the effectiveness of intrusions detection system. This chapter presents an efficient mechanism for network attacks detection and attack classification using the Management Information Base (MIB) variables with machine learning techniques. During the evaluation test, the proposed model seems highly effective with deep neural network implementation with a precision of 99.6% accuracy rate.

2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


2020 ◽  
Vol 2 (10) ◽  
pp. 169-183
Author(s):  
Serhii Tolіupa ◽  
Oleksandr Pliushch ◽  
Ivan Parkhomenko

Systems for detecting network intrusions and detecting signs of attacks on information systems have long been used as one of the necessary lines of defense of information systems. Today, intrusion and attack detection systems are usually software or hardware-software solutions that automate the process of monitoring events occurring in an information system or network, as well as independently analyze these events in search of signs of security problems. As the number of different types and ways of organizing unauthorized intrusions into foreign networks has increased significantly in recent years, attack detection systems (ATS) have become a necessary component of the security infrastructure of most organizations. The article proposes a software prototype of a network attack detection system based on selected methods of data mining and neural network structures. The conducted experimental researches confirm efficiency of the created model of detection for protection of an information network. Experiments with a software prototype showed high quality detection of network attacks based on neural network structures and methods of intelligent data distribution. The state of protection of information systems to counter cyber attacks is analyzed, which made it possible to draw conclusions that to ensure the security of cyberspace it is necessary to implement a set of systems and protection mechanisms, namely systems: delimitation of user access; firewall; cryptographic protection of information; virtual private networks; anti-virus protection of ITS elements; detection and prevention of intrusions; authentication, authorization and audit; data loss prevention; security and event management; security management.


2018 ◽  
Vol 4 (8) ◽  
pp. 6
Author(s):  
Apoorva Deshpande

Today, intrusion detection system using the neural network is an interested and considerable area for the research community. The computational intelligence systems are defined on the basis of the following parameters: fault tolerance and adaptation; adaptable the requirements of make a better intrusion detection model. In this paper, provide an overview of the research progress using computational intelligence to the problem of intrusion detection. The goal of this paper summarized and compared research contributions of Intrusion detection system using computational intelligence and neural network, define existing research challenges and anticipated solution of machine learning. Research showed that application of machine learning techniques in intrusion detection could achieve high detection rate. Machine learning and classification algorithms help to design "Intrusion Detection Models" which can classify the network traffic into intrusive or normal traffic. This paper discusses some commonly used machine learning techniques in Intrusion Detection System and also reviews some of the existing machine learning IDS proposed by researchers at different times.


Author(s):  
Pooja Sharma ◽  
Saket J Swarndeep

According the 2010 global burden of disease study, Chronic Kidney Diseases (CKD) was ranked 18th in the list of causes of total no. of deaths worldwide. 10% of the population worldwide is affected by CKD. The prediction of CKD can become a boon for the population to predict the health. Various method and techniques are undergoing the research phase for developing the most accurate CKD prediction system. Using Machine Learning techniques is the most promising one in this area due to its computing function and Machine Learning rules. Existing Systems are working well in predicting the accurate result but still more attributes of data and complicity of health parameter make the root layer for the innovation of new approaches. This study focuses on a novel approach for improving the prediction of CKD. In recent time Neural network system has discovered its use in disease diagnoses, which is depended upon prediction from symptoms data set. Chronic kidney disease detection system using neural network is shown here. This system of neural network accepts disease-symptoms as input and it is trained according to various training algorithms. After neural network is trained using back propagation algorithms, this trained neural network system is used for detection of kidney disease in the human body.


Crop diseases reduce the yield of the crop or may even kill it. Over the past two years, as per the I.C.A.R, the production of chilies in the state of Goa has reduced drastically due to the presence of virus. Most of the plants flower very less or stop flowering completely. In rare cases when a plant manages to flower, the yield is substantially low. Proposed model detects the presence of disease in crops by examining the symptoms. The model uses an object detection algorithm and supervised image recognition and feature extraction using convolutional neural network to classify crops as infected or healthy. Google machine learning libraries, TensorFlow and Keras are used to build neural network models. An Android application is developed around the model for the ease of using the disease detection system.


2020 ◽  
Author(s):  
Petter Jakobsen ◽  
Enrique Garcia-Ceja ◽  
Michael Riegler ◽  
Lena Antonsen Stabell ◽  
Tine Nordgreen ◽  
...  

ABSTRACTCurrent practice of assessing mood episodes in affective disorders largely depends on subjective observations combined with semi-structured clinical rating scales. Motor activity is an objective observation of the inner physiological state expressed in behavior patterns. Alterations of motor activity are essential features of bipolar and unipolar depression. The aim was to investigate if objective measures of motor activity can aid existing diagnostic practice, by applying machine-learning techniques to analyze activity patterns in depressed patients and healthy controls. Random Forrest, Deep Neural Network and Convolutional Neural Network algorithms were used to analyze 14 days of actigraph recorded motor activity from 23 depressed patients and 32 healthy controls. Statistical features analyzed in the dataset were mean activity, standard deviation of mean activity and proportion of zero activity. Various techniques to handle data imbalance were applied, and to ensure generalizability and avoid overfitting a Leave-One-User-Out validation strategy was utilized. All outcomes reports as measures of accuracy for binary tests. A Deep Neural Network combined with random oversampling class balancing technique performed a cut above the rest with a true positive rate of 0.82 (sensitivity) and a true negative rate of 0.84 (specificity). Accuracy was 0.84 and the Matthews Correlation Coefficient 0.65. Misclassifications appear related to data overlapping among the classes, so an appropriate future approach will be to compare mood states intra-individualistic. In summary, machine-learning techniques present promising abilities in discriminating between depressed patients and healthy controls in motor activity time series.


Author(s):  
Kayalvizhi S. ◽  
Thenmozhi D.

Catch phrases are the important phrases that precisely explain the document. They represent the context of the whole document. They can also be used to retrieve relevant prior cases by the judges and lawyers for assuring justice in the domain of law. Currently, catch phrases are extracted using statistical methods, machine learning techniques, and deep learning techniques. The authors propose a sequence to sequence (Seq2Seq) deep neural network to extract catch phrases from legal documents. They have employed several layers, namely embedding layer, encoder-decoder layer, projection layer, and loss layer to build the deep neural network. The methodology is evaluated on IRLeD@FIRE-2017 dataset and the method has obtained 0.787 and 0.607 as mean average precision and recall scores respectively. Results show that the proposed method outperforms the existing systems.


Sign in / Sign up

Export Citation Format

Share Document