Internet of Things

Author(s):  
Mamoon Rashid ◽  
Ishrat Nazeer ◽  
Sachin Kumar Gupta ◽  
Zeba Khanam

The internet of things (IoT) is a computing paradigm that has changed our daily livelihood and functioning. IoT focuses on the interconnection of all the sensor-based devices like smart meters, coffee machines, cell phones, etc., enabling these devices to exchange data with each other during human interactions. With easy connectivity among humans and devices, speed of data generation is getting multi-fold, increasing exponentially in volume, and is getting more complex in nature. In this chapter, the authors will outline the architecture of IoT for handling various issues and challenges in real-world problems and will cover various areas where usage of IoT is done in real applications. The authors believe that this chapter will act as a guide for researchers in IoT to create a technical revolution for future generations.

Biotechnology ◽  
2019 ◽  
pp. 1967-1984
Author(s):  
Dharmendra Trikamlal Patel

Voluminous data are being generated by various means. The Internet of Things (IoT) has emerged recently to group all manmade artificial things around us. Due to intelligent devices, the annual growth of data generation has increased rapidly, and it is expected that by 2020, it will reach more than 40 trillion GB. Data generated through devices are in unstructured form. Traditional techniques of descriptive and predictive analysis are not enough for that. Big Data Analytics have emerged to perform descriptive and predictive analysis on such voluminous data. This chapter first deals with the introduction to Big Data Analytics. Big Data Analytics is very essential in Bioinformatics field as the size of human genome sometimes reaches 200 GB. The chapter next deals with different types of big data in Bioinformatics. The chapter describes several problems and challenges based on big data in Bioinformatics. Finally, the chapter deals with techniques of Big Data Analytics in the Bioinformatics field.


2013 ◽  
Vol 336-338 ◽  
pp. 2512-2515
Author(s):  
Li Min Liu

The internet of things is a foundation for connecting things, sensors, actuators, and other smart technologies, thus enabling person-to-object and object-to-object communications. Its applications are concerned to emergency response, intelligent shopping, smart product management, smart meters, home automation, waste management, sustainable urban environment, continuous care and so on. As automatic identification sensor, RFID is a foundational component for the internet of things. In this paper, internet of things, RFID and technical analysis for IoT and RFID are discussed.


2020 ◽  
Author(s):  
Shamim Muhammad ◽  
Inderveer Chana ◽  
Supriya Thilakanathan

Edge computing is a technology that allows resources to be processed or executed close to the edge of the internet. The interconnected network of devices in the Internet of Things has led to an increased amount of data, increasing internet traffic usage every year. Also, edge computing is driving applications and computing power away from the integrated points to areas close to users, leading to improved performance of the application. Despite the explosive growth of the edge computing paradigm, there are common security vulnerabilities associated with the Internet of Things applications. This paper will evaluate and analyze some of the most common security issues that pose a serious threat to the edge computing paradigm.


2022 ◽  
pp. 132-148
Author(s):  
Kiran M. B. ◽  
Martin George Wynn

The Internet of Things (IoT) is formed by a set of physical objects with embedded sensors, connected using a network so that they can collect and exchange data. Though the concept looks simple, its deployment in industry has enormous potential to bring major business benefits and radical change. This chapter examines IoT technology and how it is being used in the corporate environment. Based on a review of existing literature and case examples, the various definitions and elements of IoT are discussed, followed by an assessment of how IoT is being used and what benefits are being delivered. Some key emergent themes are then examined – security aspects, the significance of 5G networks, and the need for an IoT strategy and project implementation guidelines. The chapter concludes by outlining possible areas for future research and suggests a step-change in the mega-infrastructure connecting IoT devices is imminent.


Author(s):  
Dharmendra Trikamlal Patel

Voluminous data are being generated by various means. The Internet of Things (IoT) has emerged recently to group all manmade artificial things around us. Due to intelligent devices, the annual growth of data generation has increased rapidly, and it is expected that by 2020, it will reach more than 40 trillion GB. Data generated through devices are in unstructured form. Traditional techniques of descriptive and predictive analysis are not enough for that. Big Data Analytics have emerged to perform descriptive and predictive analysis on such voluminous data. This chapter first deals with the introduction to Big Data Analytics. Big Data Analytics is very essential in Bioinformatics field as the size of human genome sometimes reaches 200 GB. The chapter next deals with different types of big data in Bioinformatics. The chapter describes several problems and challenges based on big data in Bioinformatics. Finally, the chapter deals with techniques of Big Data Analytics in the Bioinformatics field.


With the evolution of the Internet and related technologies, there has been an evolution of new paradigm, which is the Internet of Things (IoT). IoT is the network of physical objects, such as devices, embedded with electronics, software, sensors, and network connectivity that enables these objects to collect and exchange data. In the IoT, a large number of objects are connected to one another for information sharing, irrespective of their locations (Corcoran, 2016). Even though the IoT was defined at 1999, the concept of IoT has been in development for decades. As the technology and implementation of the IoT ideas move forward, different views for the concept of the IoT have appeared (Ma, 2011). Based on different views, in this book, the IoT is defined as a kind of modern technology, implicating machine to machine communications and person to computer communications will be extended to everything from everyday household objects to sensors monitoring the movement. Currently, we can see a few key areas of focus for the Internet of Things (IoT) that will require special attention over the course of the next decade on the part of computer science, energy technology, networks, wireless communication, and system platform. There are already a number of implementation case studies emerging from companies across a range of industry sectors.


2021 ◽  
Author(s):  
NAGAJAYANTHI BOOBALAKRISHNAN

Abstract Internet connects people to people, people to machine, and machine to machine for a life of serendipity through a Cloud. Internet of Things networks objects or people and integrates them with software to collect and exchange data. The Internet of things (IoT) influences our lives based on how we ruminate, respond, and anticipate. IoT 2020 heralds from the fringes to the data ecosystem and panaches a comfort zone. IoT is overwhelmingly embraced by businessmen and consumers due to increased productivity and convenience. Internet of Things facilitates intelligent device control with cloud vendors like Amazon and Google using artificial intelligence for data analytics, and with digital assistants like Alexa and Siri providing a voice user interface. Smart IoT is all about duplex connecting, processing, and implementing. With 5G, lightning faster rate of streaming analytics is realistic. An amalgamation of technologies has led to this techno-industrial IoT revolution. Centralized IoT architecture is vulnerable to cyber-attacks. With Block Chain, it is possible to maintain transparency and security of the transaction's data. Standardization of IoT devices is achievable with limited vendors based on Platform, Connectivity, and Application. Robotic Process Automation (RPA) using bots has automated laborious tasks in 2019. Embedded Internet using Facial Recognition could reduce the pandemic crisis. Security concerns are addressed with micro-segmentation approaches. IoT, an incredible vision of the future makes systems adaptive with customized features, responsive with increased efficiency, and procurable with optimized cost. This paper delivers a comprehensive insight into the technical perspectives of IoT, focusing on interoperability, flexibility, scalability, mobility, security, transparency, standardization, and low energy.


2020 ◽  
Vol 18 (5) ◽  
pp. 401-409
Author(s):  
Divya Yadav ◽  
Balwant Raj ◽  
Balwinder Raj

The Internet of Things (IoT) is an array of interrelated registering gadgets, mechanical and advanced electronics machines, articles, creatures or individuals that are given with unique identifiers and the ability to exchange data over a system without man to man or man to PC partnership. IoT created an expanded enthusiasm to research and industrial into points of view. This development is due to the availability of low-priced, low-powered diminutive elements like processors, communications and sensors that were integrated on a single chip. In this work we design the low power microcontroller for IoT application. There are various microcontrollers available in the market for IoT application, we have done the comparative study of different microcontroller and proposed a low power microcontroller architecture based on the requirement of IoT. The power analysis is carried out by calculating power consumed in the different digital circuits with ALU and without ALU.


Author(s):  
Nisha Angeline C. V. ◽  
Raja Lavanya

Fog computing extends the cloud computing paradigm to the edge of the network, thus enabling a new breed of applications and services. Defining characteristics of the Fog are 1) low latency and location awareness, 2) widespread geographical distribution, 3) mobility, 4) very large number of nodes, 5) predominant role of wireless access, 6) strong presence of streaming and real time applications, and 7) heterogeneity. In this chapter, the authors argue that the above characteristics make the Fog the appropriate platform for a number of critical internet of things (IoT) services and applications, namely connected vehicle, smart grid, smart cities, and in general, wireless sensors and actuators networks (WSANs).


Sign in / Sign up

Export Citation Format

Share Document