Applying Industry 4.0 on Management of Gastronomy Events

Author(s):  
Asim Saldamli ◽  
Nurhayat Iflazoglu ◽  
Ipek Itır Can

Industry 4.0 plays a role in meeting the demands of the global market in food and beverage activities with more efficient, harmonious, reliable, and sustainable production processes. In the recent years, enterprises have started taking advantage of augmented reality technology in the design phase; three-dimensional printers, internet of things technology and robot chefs during the production phase; and robot waiters in the presentation phase. In this context, in this chapter, the transformations experienced in the design, production, and presentation processes of banquet organizations as the result of the Gastronomy 4.0 concept, which emerged as a result of the reflections of Industry 4.0 on the field of gastronomy, were examined. It is thought that in the near future, if the prevalence of Gastronomy 4.0 applications increases, the personnel responsible for running banquet organizations will need to be trained and also informed about the equipment of the new age.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abrar Malik ◽  
Mir Irfan Ul Haq ◽  
Ankush Raina ◽  
Kapil Gupta

Purpose Environmental degradation has emerged as one of the major limitations of industrial revolution and has led to an increased focus towards developing sustainable strategies and techniques. This paper aims to highlight the sustainability aspects of three-dimensional (3D) printing technology that helps towards a better implementation of Industry 4.0. It also aims to provide a brief picture of relationships between 3D printing, Industry 4.0 and sustainability. The major goal is to facilitate the researchers, scholars, engineers and recommend further research, development and innovations in the field. Design/methodology/approach The various enabling factors for implementation of Industry 4.0 are discussed in detail. Some barriers to incorporation of 3D Printing, its applications areas and global market scenario are also discussed. A through literature review has been done to study the detailed relationships between 3D printing, Industry 4.0 and sustainability. Findings The technological benefits of 3D printing are many such as weight savings, waste minimization and energy savings. Further, the production of new 3D printable materials with improved features helps in reducing the wastage of material during the process. 3D printing if used at a large scale would help industries to implement the concept of Industry 4.0. Originality/value This paper focuses on discussing technological revolution under Industry 4.0 and incorporates 3D printing-type technologies that largely change the product manufacturing scenario. The interrelationships between 3D printing, Industry 4.0 and sustainability have been discussed.


2019 ◽  
Vol 6 (2) ◽  
pp. b8-b13
Author(s):  
I. Karabegovic ◽  
E. Karabegovic ◽  
M. Mahmic ◽  
E. Husak

In the world of global competition, customers have increasing demands that companies must meet in order to remain active in the global market. For this reason, it is necessary to use new technologies in the production processes, i.e. to implement Industry 4.0. In other words, we need to create a connected company through the digital transformation that enables production processes to discover new ways to increase productivity and improve overall business performance. Companies need to get involved and start a digital system, and from supplier to customer. It is a key to the hidden value that can contribute to the company’s productivity, compliance, profitability, as well as the quality of the finished product, and eventually the introduction of flexible industrial automation of production processes. The aforementioned technologies and Internet of Things connect the physical and virtual world with a purpose to better collect and analyze data, transforming them into information that reaches decision-makers. To do this, it is necessary to implement smart sensors that provide information at all times. The implementation of Industry 4.0 in production processes is unthinkable without smart sensors and provides the following: faster product development time, lower overall costs, improved use of production processes and their optimization, as well as company risk management. The paper will outline the motives for the implementation of smart sensors and applications of smart sensors in production processes. Keywords: production process, smart sensor, Industry 4.0, production automation, digital transformation, flexible automation.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Xin Wan ◽  
Ximing Liu ◽  
Jichen Miao ◽  
Peng Cong ◽  
Yuai Zhang ◽  
...  

Pebble dynamics is important for the safe operation of pebble-bed high temperature gas-cooled reactors and is a complicated problem of great concern. To investigate it more authentically, a computed tomography pebble flow detecting (CT-PFD) system has been constructed, in which a three-dimensional model is simulated according to the ratio of 1 : 5 with the core of HTR-PM. A multislice helical CT is utilized to acquire the reconstructed cross-sectional images of simulated pebbles, among which special tracer pebbles are designed to indicate pebble flow. Tracer pebbles can be recognized from many other background pebbles because of their heavy kernels that can be resolved in CT images. The detecting principle and design parameters of the system were demonstrated by a verification experiment on an existing CT system in this paper. Algorithms to automatically locate the three-dimensional coordinates of tracer pebbles and to rebuild the trajectory of each tracer pebble were presented and verified. The proposed pebble-detecting and tracking technique described in this paper will be implemented in the near future.


Information ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 120
Author(s):  
Majid Ziaei Nafchi ◽  
Hana Mohelská

The emergence of the fourth industrial revolution (Industry 4.0, hereinafter I 4.0) has led to an entirely fresh approach to production, helping to enhance the key industrial processes and therefore increase the growth of labor productivity and competitiveness. Simultaneously, I 4.0 compels changes in the organization of work and influences the lives of employees. The paper intends to construct a model for predicting the allocation of human resources in the sectors of the national economy of the Czech Republic in connection with I 4.0. The model used in this research visualizes the shift of labor in the economic sectors of the Czech Republic from the year 2013 to the following years in the near future. The main contribution of this article is to show the growth of employment in the high-tech services sector, which will have an ascending trend.


Author(s):  
Edgar Chacón ◽  
Luis Alberto Cruz Salazar ◽  
Juan Cardillo ◽  
Yenny Alexandra Paredes Astudillo

AbstractIndustry 4.0 (I4.0) brings together new disruptive technologies, increasing future factories’ productivity. Indeed, the control of production processes is fast becoming a key driver for manufacturing operations. Manufacturing control systems have recently been developed for distributed or semi-heterarchical architectures, e.g., holonic systems improving global efficiency and manufacturing operations’ reactiveness. So far, previous studies and applications have not dealt with continuous production processes, such as applications for Water Supply System (WSS), oil refining, or electric power plants. The complexity of continuous production is that a single fault can degrade extensively and even cause service disruption. Therefore, this paper proposes the Holonic Production Unit (HPU) architecture as a solution to control continuous production processes. An HPU is created as a holon unit depicting resources in a continuous process. This unit can detect events within the environment, evaluate several courses of action, and change the parameters aligned to a mission. The proposed approach was tested using a simulated model of WSS. The experiments described in this paper were conducted using a traditional WSS, where the communication and decision-making features allow the application of HPU. The results suggest that constructing a holarchy with different holons can fulfill I4.0 requirements for continuous production processes.


Author(s):  
Antonio Sartal ◽  
Diego Carou ◽  
Rubén Dorado-Vicente ◽  
Lorenzo Mandayo

Our research explores how additive manufacturing can support the food industry in facing its current global challenges. Although information technologies are usually highlighted as the main driver of the Industry 4.0 concept, which was first introduced during the Hannover Fair event in 2011, we posit that additive manufacturing can be the true generator of a sustainable competitive advantage in this sector. This evidence stems from a case study in a plant of one of the world’s largest fishing multinational companies. Our results show how, through robotic claw optimization using three-dimensional printing, we not only reduce the manufacturing costs but also increase the flexibility of the line and reduce time to market. On the one hand, our findings should encourage managers to test this technology at their facilities; on the other hand, policymakers should promote the adoption of additive manufacturing, highlighting the potential of this technology within the Industry 4.0 context.


2014 ◽  
Vol 711 ◽  
pp. 546-549
Author(s):  
Wei Lin ◽  
Wei Hwa Chiang

Taipei Top Church Auditorium is a hall primarily intended for praise and worship. A three dimensional ray tracing computer simulation was used to provide sound energy distribution on the audience area of the hall, realistic design have been performed. The volume of the hall is 24600m3, which is occupied for 2200 people and equipped the hall with acoustical curtains by modifying its acoustical characteristics. Objective measurements of impulse response are reported, and background noise control and noise isolation are also be considered in the design phase. Reinforcement system is conducted to meet all the activity for the acoustical environments.


2018 ◽  
Vol 1 (1) ◽  
pp. 353-359
Author(s):  
Anna Timofiejczuk ◽  
Jaroslaw Brodny ◽  
Andrzej Loska

Abstract The article is a review of completed research on developed and implemented innovative and technologically advanced technical systems. According to the Industry 4.0 concept they can have a significant impact on the efficiency of production processes and product development. In this perspective, the key aspect seems to be maintenance management of technical systems, realized both in the operate phase as well as during service and repair works. There were discussed research results of authors and developed application solutions supporting decision-making processes, in terms of three main periods of realization of exploitation processes: short, medium and long-term.


Sign in / Sign up

Export Citation Format

Share Document