Survey of Applications of Neural Networks and Machine Learning to COVID-19 Predictions

2022 ◽  
pp. 30-57
Author(s):  
Richard S. Segall

The purpose of this chapter is to illustrate how artificial intelligence (AI) technologies have been used for COVID-19 detection and analysis. Specifically, the use of neural networks (NN) and machine learning (ML) are described along with which countries are creating these techniques and how these are being used for COVID-19 diagnosis and detection. Illustrations of multi-layer convolutional neural networks (CNN), recurrent neural networks (RNN), and deep neural networks (DNN) are provided to show how these are used for COVID-19 detection and prediction. A summary of big data analytics for COVID-19 and some available COVID-19 open-source data sets and repositories and their characteristics for research and analysis are also provided. An example is also shown for artificial intelligence (AI) and neural network (NN) applications using real-time COVID-19 data.

Author(s):  
Fernando Enrique Lopez Martinez ◽  
Edward Rolando Núñez-Valdez

IoT, big data, and artificial intelligence are currently three of the most relevant and trending pieces for innovation and predictive analysis in healthcare. Many healthcare organizations are already working on developing their own home-centric data collection networks and intelligent big data analytics systems based on machine-learning principles. The benefit of using IoT, big data, and artificial intelligence for community and population health is better health outcomes for the population and communities. The new generation of machine-learning algorithms can use large standardized data sets generated in healthcare to improve the effectiveness of public health interventions. A lot of these data come from sensors, devices, electronic health records (EHR), data generated by public health nurses, mobile data, social media, and the internet. This chapter shows a high-level implementation of a complete solution of IoT, big data, and machine learning implemented in the city of Cartagena, Colombia for hypertensive patients by using an eHealth sensor and Amazon Web Services components.


Author(s):  
Paolo Massimo Buscema ◽  
William J Tastle

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.


Author(s):  
Paolo Massimo Buscema ◽  
William J. Tastle

Data sets collected independently using the same variables can be compared using a new artificial neural network called Artificial neural network What If Theory, AWIT. Given a data set that is deemed the standard reference for some object, i.e. a flower, industry, disease, or galaxy, other data sets can be compared against it to identify its proximity to the standard. Thus, data that might not lend itself well to traditional methods of analysis could identify new perspectives or views of the data and thus, potentially new perceptions of novel and innovative solutions. This method comes out of the field of artificial intelligence, particularly artificial neural networks, and utilizes both machine learning and pattern recognition to display an innovative analysis.


Author(s):  
Vishal Babu Siramshetty ◽  
Dac-Trung Nguyen ◽  
Natalia J. Martinez ◽  
Anton Simeonov ◽  
Noel T. Southall ◽  
...  

The rise of novel artificial intelligence methods necessitates a comparison of this wave of new approaches with classical machine learning for a typical drug discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by human Ether-à-go-go-Related Gene (hERG), leads to prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here we perform a comprehensive comparison of prediction models based on classical (random forests and gradient boosting) and modern (deep neural networks and recurrent neural networks) artificial intelligence methods. The training set (~9000 compounds) was compiled by integrating hERG bioactivity data from ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-valued continuous vectors derived from chemical autoencoders trained on a large chemical space (> 1.5 million compounds). The models were prospectively validated on ~840 in-house compounds screened in the same thallium flux assay. The deep neural networks performed significantly better than the classical methods with the latent descriptors. The recurrent neural networks that operate on SMILES provided highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Further, we shed light on the potential of artificial intelligence methods to exploit the chemistry big data and generate novel chemical representations useful in predictive modeling and tailoring new chemical space.<br>


2020 ◽  
pp. practneurol-2020-002688
Author(s):  
Stephen D Auger ◽  
Benjamin M Jacobs ◽  
Ruth Dobson ◽  
Charles R Marshall ◽  
Alastair J Noyce

Modern clinical practice requires the integration and interpretation of ever-expanding volumes of clinical data. There is, therefore, an imperative to develop efficient ways to process and understand these large amounts of data. Neurologists work to understand the function of biological neural networks, but artificial neural networks and other forms of machine learning algorithm are likely to be increasingly encountered in clinical practice. As their use increases, clinicians will need to understand the basic principles and common types of algorithm. We aim to provide a coherent introduction to this jargon-heavy subject and equip neurologists with the tools to understand, critically appraise and apply insights from this burgeoning field.


Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 591-606
Author(s):  
R. Brindha ◽  
Dr.M. Thillaikarasi

Big data analytics (BDA) is a system based method with an aim to recognize and examine different designs, patterns and trends under the big dataset. In this paper, BDA is used to visualize and trends the prediction where exploratory data analysis examines the crime data. “A successive facts and patterns have been taken in following cities of California, Washington and Florida by using statistical analysis and visualization”. The predictive result gives the performance using Keras Prophet Model, LSTM and neural network models followed by prophet model which are the existing methods used to find the crime data under BDA technique. But the crime actions increases day by day which is greater task for the people to overcome the challenging crime activities. Some ignored the essential rate of influential aspects. To overcome these challenging problems of big data, many studies have been developed with limited one or two features. “This paper introduces a big data introduces to analyze the influential aspects about the crime incidents, and examine it on New York City. The proposed structure relates the dynamic machine learning algorithms and geographical information system (GIS) to consider the contiguous reasons of crime data. Recursive feature elimination (RFE) is used to select the optimum characteristic data. Exploitation of gradient boost decision tree (GBDT), logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) are related to develop the optimum data model. Significant impact features were then reviewed by applying GBDT and GIS”. The experimental results illustrates that GBDT along with GIS model combination can identify the crime ranking with high performance and accuracy compared to existing method.”


Lubricants ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 82
Author(s):  
Andreas Almqvist

This paper presents a complete derivation and design of a physics-informed neural network (PINN) applicable to solve initial and boundary value problems described by linear ordinary differential equations. The objective with this technical note is not to develop a numerical solution procedure which is more accurate and efficient than standard finite element- or finite difference-based methods, but to give a fully explicit mathematical description of a PINN and to present an application example in the context of hydrodynamic lubrication. It is, however, worth noticing that the PINN developed herein, contrary to FEM and FDM, is a meshless method and that training does not require big data which is typical in machine learning.


Author(s):  
Rahul Badwaik

Healthcare industry is currently undergoing a digital transformation, and Artificial Intelligence (AI) is the latest buzzword in the healthcare domain. The accuracy and efficiency of AI-based decisions are already been heard across countries. Moreover, the increasing availability of electronic clinical data can be combined with big data analytics to harness the power of AI applications in healthcare. Like other countries, the Indian healthcare industry has also witnessed the growth of AI-based applications. A review of the literature for data on AI and machine learning was conducted. In this article, we discuss AI, the need for AI in healthcare, and its current status. An overview of AI in the Indian healthcare setting has also been discussed.


Author(s):  
Balasree K ◽  
Dharmarajan K

In rapid development of Big Data technology over the recent years, this paper discussing about the Machine Learning (ML) playing role that is based on methods and algorithms to Big Data Processing and Big Data Analytics. In evolutionary fields and computing fields of developments that both are complementing each other. Big Data: The rapid growth of such data solutions needed to be studied and provided to handle then to gain the knowledge from datasets and extracting values due to the data sets are very high in velocity and variety. The Big data analytics are involving and indicating the appropriate data storage and computational outline that enhanced by using Scalable Machine Learning Algorithms and Big Data Analytics then the analytics to reveal the massive amounts of hidden data’s and secret correlations. This type of Analytic information useful for organizations and companies to gain deeper knowledge, development and getting advantages over the competition. When using this Analytics we can predict the accurate implementation over the data. This paper presented about the detailed review of state-of-the-art developments and overview of advantages and challenges in Machine Learning Algorithms over big data analytics.


Sign in / Sign up

Export Citation Format

Share Document