Thermophilic Bacterial Exopolysaccharides

2022 ◽  
pp. 334-361
Author(s):  
Rakesh Goswami ◽  
Bidyut Bandyopadhyay ◽  
Sanjoy Sadhukhan

Bacterial exopolysaccharides have enormous diversity with valuable characteristics, synthesized by various pathways in extreme conditions like salinity, geothermal springs, or hydrothermal vents. Due to extreme environments, these microorganisms have various adaption principles (e.g., low pH, high temperature, high saltation, and high radiation). Exopolysaccharide is an organic compound produced by most bacteria during fermentation using various carbon sources, resulting in a jelly-like or mass network structure outside the cell wall. This biopolymer has an adherent cohesive layer throughout the cell layer. Hot spring bacterial polysaccharides contain diverse extracellular polymeric substances. With a gain in popularity in applications of thermophilic microbial polysaccharides and its demand in diverse value-added industrial products, this chapter aims to provide valuable information on the physicochemical function and biotechnological applications in the field of food, medical imaging, nano-drugs, bioremediation, cancer, anti-bacterial, tissue engineering, etc.

2017 ◽  
Vol 39 (6) ◽  
pp. 34-39
Author(s):  
Helen Albert

The ability of some organisms to live in extreme environments has always fascinated us. While more complex species such as mammals can live in very cold or hot surroundings, microorganisms definitely take the crown when it comes to being able to survive the most extreme conditions. These extremophiles are very resilient and can survive conditions that would kill other organisms in seconds. Indeed, some researchers believe that life may have begun with such organisms living deep under the ocean on hydrothermal vents. Helen Albert talks to Professor Rania Siam from The American University in Cairo, Egypt, about her research on microbes living near highly salty underwater ‘brine pools’ in the Red Sea. Helen also discusses the remarkable bacterium Deinococcus radiodurans, which is able to withstand high levels of radiation and desiccation, with Professor Michael Daly from the Uniformed Services University in Bethesda in the USA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Revathi Gurunathan ◽  
Bin Huang ◽  
Vinoth Kumar Ponnusamy ◽  
Jiang-Shiou Hwang ◽  
Hans-Uwe Dahms

AbstractMicrobial secondary metabolites from extreme environments like hydrothermal vents are a promising source for industrial applications. In our study the protease gene from Bacillus cereus obtained from shallow marine hydrothermal vents in the East China Sea was cloned, expressed and purified. The protein sequence of 38 kDa protease SLSP-k was retrieved from mass spectrometry and identified as a subtilisin serine proteinase. The novel SLSP-k is a monomeric protein with 38 amino acid signal peptides being active over wide pH (7–11) and temperature (40–80 °C) ranges, with maximal hydrolytic activities at pH 10 and at 50 °C temperature. The hydrolytic activity is stimulated by Ca2+, Co2+, Mn2+, and DTT. It is inhibited by Fe2+, Cd2+, Cu2+, EDTA, and PMSF. The SLSP-k is stable in anionic, non-anionic detergents, and solvents. The ability to degrade keratin in chicken feather and hair indicates that this enzyme is suitable for the degradation of poultry waste without the loss of nutritionally essential amino acids which otherwise are lost in hydrothermal processing. Therefore, the proteinase is efficient in environmental friendly bioconversion of animal waste into fertilizers or value added products such as secondary animal feedstuffs.


2020 ◽  
Author(s):  
Revathi Gurunathan ◽  
Bin Huang ◽  
Vinoth Kumar Ponnusamy ◽  
Jiang-Shiou Hwang ◽  
Hans-Uwe Dahms

Abstract Microbial secondary metabolites from extreme environments like hydrothermal vents are a promising source for industrial applications. In our study the protease gene from Bacillus cereus from shallow marine hydrothermal vents in the East China Sea was cloned, expressed and purified. The protein sequence of 38 kDa protease SLSP-k was retrieved from mass spectrometry and identified as a subtilisin serine proteinase. The novel SLSP-k is a monomeric protein with 38 amino acid signal peptides being active over wide pH (7–11) and temperature (40–80 ℃) ranges, with maximal hydrolytic activities at pH 10 and at 50 ℃ temperature. The hydrolytic activity is stimulated by Ca2+, Co2+, Mn2+, and DTT. It is inhibited by Fe2+, Cd2+, Cu2+, EDTA, and PMSF. The SLSP-k is stable in anionic, non- anionic detergents, and solvents. The ability to degrade keratin in chicken feather and hair indicate that the protein is suitable for waste management and value-added product synthesis as well as several research applications.


2006 ◽  
Vol 52 (2) ◽  
pp. 73-116 ◽  
Author(s):  
Bonnie Chaban ◽  
Sandy Y.M Ng ◽  
Ken F Jarrell

The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.Key words: Archaea, methanogen, extreme halophile, hyperthermophile, thermoacidophile, uncultured archaea, habitats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aparna Banerjee ◽  
Shrabana Sarkar ◽  
Tanvi Govil ◽  
Patricio González-Faune ◽  
Gustavo Cabrera-Barjas ◽  
...  

Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.


Author(s):  
Б Одгэрэл ◽  
Д Цэрэндулам

The genus Dunaliella is widely studied microalgae for its tolerance to extreme conditions, physiological aspects and many biotechnological applications, such as beta-carotene, protein, lipids and many other bioactive compounds. Physiological and biochemical studies are essential to fully explore the properties and possibilities of new isolates of Dunaliella.The aim of this study was to describe cellular morphology, growth rate and protein content of three Dunaliella strains, isolated from salty lakes in Mongolia. The cellular morphology, growth rates, protein contents were studied using microscopic analyses, Neubauer’s chamber, and micro kjeldahl method.Results showed that growths of all three Dunaliella cultures were progressed through lag phase at 3rd day. The growth of Dunaliella D-1 reached its peak on day 6, while Dunaliella D-6 and D-7 reached their stationary phase on day 7. Furthermore, the protein contents of dry biomass in Dunaliella D-1, D-6 and D-7 cultures were 62.2%, 36.1% and 38.15%, respectively. The highest protein content was found in Dunaliella D-1 culture, hence this culture could be used as protein rich supplement in further study.


2021 ◽  
Vol 25 (1) ◽  
pp. 574-586
Author(s):  
Marta Bertolini ◽  
Fosca Conti

Abstract Carbon dioxide emissions are strongly related to climate change and increase of global temperature. Whilst a complete change in producing materials and energy and in traffic and transportation systems is already in progress and circular economy concepts are on working, Carbon Capture and Storage (CCS) and Carbon Capture and Utilisation (CCU) represent technically practicable operative strategies. Both technologies have main challenges related to high costs, so that further advanced research is required to obtain feasible options. In this article, the focus is mainly on CCU using microalgae that are able to use CO2 as building block for value-added products such as biofuels, EPS (Extracellular Polymeric Substances), biomaterials and electricity. The results of three strains (UTEX 90, CC 2656, and CC 1010) of the microalgal organism Chlamydomonas reinhardtii are discussed. The results about ideal culture conditions suggest incubation temperature of 30 °C, pH between 6.5 and 7.0, concentrations of acetate between 1.6 and 2.3 g L–1 and of ammonium chloride between 0.1 and 0.5 g L–1, the addition of glucose This green microalga is a valid model system to optimize the production of biomass, carbohydrates and lipids.


Author(s):  
Yafei Chang ◽  
Qilian Fan ◽  
Jialin Hou ◽  
Yu Zhang ◽  
Jing Li

Abstract Microorganisms in deep-sea hydrothermal vents provide valuable insights into life under extreme conditions. Mass spectrometry-based proteomics has been widely used to identify protein expression and function. However, the metaproteomic studies in deep-sea microbiota have been constrained largely by the low identification rates of protein or peptide. To improve the efficiency of metaproteomics for hydrothermal vent microbiota, we firstly constructed a microbial gene database (HVentDB) based on 117 public metagenomic samples from hydrothermal vents and proposed a metaproteomic analysis strategy, which takes the advantages of not only the sample-matched metagenome, but also the metagenomic information released publicly in the community of hydrothermal vents. A two-stage false discovery rate method was followed up to control the risk of false positive. By applying our community-supported strategy to a hydrothermal vent sediment sample, about twice as many peptides were identified when compared with the ways against the sample-matched metagenome or the public reference database. In addition, more enriched and explainable taxonomic and functional profiles were detected by the HVentDB-based approach exclusively, as well as many important proteins involved in methane, amino acid, sugar, glycan metabolism and DNA repair, etc. The new metaproteomic analysis strategy will enhance our understanding of microbiota, including their lifestyles and metabolic capabilities in extreme environments. The database HVentDB is freely accessible from http://lilab.life.sjtu.edu.cn:8080/HventDB/main.html.


Author(s):  
Javid A. Malik ◽  
Monika Bhadauria

Human dependence on number of chemicals or chemical derivatives has increased alarmingly. Among the commodity chemicals, plastics are becoming independent for our modern lifestyle, as the usage of plastics is increasing worryingly. However, these synthetic plastics are extremely persistent in nature and accumulate in the environment, thereby leading to serious ecological problems. So, to build our economy sustainably, a need of replacement is necessary. Biomaterials in terms of bioplastics are an anticipated option, being synthesized and catabolized by different organisms with myriad biotechnological applications. Polyhydroxyalkanoates (PHAs) are among such biodegradable bioplastics, which are considered as an effective alternative for conventional plastics due to their similar mechanical properties of plastics. A range of microbes under different nutrient and environmental conditions produce PHAs significantly with the help of enzymes. PHA synthases encoded by phaC genes are the key enzymes that polymerize PHA monomers. Four major classes of PHA synthases can be distinguished based on their primary structures, as well as the number of subunits and substrate specificity. PHAs can also be produced from renewable feedstock under, unlike the petrochemically derived plastics that are produced by fractional distillation of depleting fossil fuels. Polyhydroxybutyrate (PHB) is the simplest yet best known polyester of PHAs, as the PHB derived bioplastics are heat tolerant, thus used to make heat tolerant and clear packaging film. They have several medical applications such as drug delivery, suture, scaffold and heart valves, tissue engineering, targeted drug delivery, and agricultural fields. Genetic modification (GM) may be necessary to achieve adequate yields. The selections of suitable bacterial strains, inexpensive carbon sources, efficient fermentation, and recovery processes are also some aspects important aspects taken into consideration for the commercialization of PHA. PHA producers have been reported to reside at various ecological niches with few among them also produce some byproducts like extracellular polymeric substances, rhamnolipids and biohydrogen gas. So, the metabolic engineering thereafter promises to bring a feasible solution for the production of “green plastic” in order to preserve petroleum reserves and diminish the escalating human and animal health concerns environmental implications.


2018 ◽  
Vol 7 (2) ◽  
pp. 33-45
Author(s):  
Mohammad Shahedur Rahman ◽  
Rasheda Banu ◽  
Ripa Moni ◽  
Nazmul Islam ◽  
Mastura Khatun Ruma ◽  
...  

A new isolate was investigated from soil sample collected from Shahrasti upazilla of Chandpur district of Bangladesh. Based on the physico-chemical studies the strain was identified as gram positive Bacilli. Moleculer characterization of the strain was identified as Bacillus aryabhattai which is the first report in Bangladesh. The strain can survive in extreme conditions of salt, temperature and pH. This strain was further characterized and screened for the ability to produce useful enzymes. The optimum temperature for growth and production of these enzymes was within the temperature range 35oC to 40oC. The pH was found to be 7 for its growth and production of different enzymes when investigated over 48 h of incubation. The isolate produced various extracellular enzymes such as α-amylases, cellulases, β-glucosidases, lipases and proteases. The findings of this study provide useful information of the new strain that has potential biotechnological applications. Jahangirnagar University J. Biol. Sci. 7(2): 33-45, 2018 (December)


Sign in / Sign up

Export Citation Format

Share Document