Archaeal habitats — from the extreme to the ordinary

2006 ◽  
Vol 52 (2) ◽  
pp. 73-116 ◽  
Author(s):  
Bonnie Chaban ◽  
Sandy Y.M Ng ◽  
Ken F Jarrell

The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.Key words: Archaea, methanogen, extreme halophile, hyperthermophile, thermoacidophile, uncultured archaea, habitats.

2007 ◽  
Vol 73 (20) ◽  
pp. 6669-6677 ◽  
Author(s):  
Eric S. Boyd ◽  
Robert A. Jackson ◽  
Gem Encarnacion ◽  
James A. Zahn ◽  
Trevor Beard ◽  
...  

ABSTRACT Elemental sulfur (S0) is associated with many geochemically diverse hot springs, yet little is known about the phylogeny, physiology, and ecology of the organisms involved in its cycling. Here we report the isolation, characterization, and ecology of two novel, S0-reducing Crenarchaea from an acid geothermal spring referred to as Dragon Spring. Isolate 18U65 grows optimally at 70 to 72°C and at pH 2.5 to 3.0, while isolate 18D70 grows optimally at 81°C and pH 3.0. Both isolates are chemoorganotrophs, dependent on complex peptide-containing carbon sources, S0, and anaerobic conditions for respiration-dependent growth. Glycerol dialkyl glycerol tetraethers (GDGTs) containing four to six cyclopentyl rings were present in the lipid fraction of isolates 18U65 and 18D70. Physiological characterization suggests that the isolates are adapted to the physicochemical conditions of Dragon Spring and can utilize the natural organic matter in the spring as a carbon and energy source. Quantitative PCR analysis of 16S rRNA genes associated with the S0 flocs recovered from several acid geothermal springs using isolate-specific primers indicates that these two populations together represent 17 to 37% of the floc-associated DNA. The physiological characteristics of isolates 18U65 and 18D70 are consistent with their potential widespread distribution and putative role in the cycling of sulfur in acid geothermal springs throughout the Yellowstone National Park geothermal complex. Based on phenotypic and genetic characterization, the designations Caldisphaera draconis sp. nov. and Acidilobus sulfurireducens sp. nov. are proposed for isolates 18U65 and 18D70, respectively.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aparna Banerjee ◽  
Shrabana Sarkar ◽  
Tanvi Govil ◽  
Patricio González-Faune ◽  
Gustavo Cabrera-Barjas ◽  
...  

Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.


2016 ◽  
Vol 74 (4) ◽  
pp. 824-835 ◽  
Author(s):  
Janet Jiménez ◽  
Susanne Theuerl ◽  
Ingo Bergmann ◽  
Michael Klocke ◽  
Gilda Guerra ◽  
...  

The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S492-S492
Author(s):  
David C Nguyen ◽  
Michelle Lisgaris ◽  
Sruthi Vasireddy ◽  
Richard J Wallace ◽  
Federico Perez ◽  
...  

Abstract Background The widespread use of molecular techniques has resulted in increasing numbers of newly characterized rapidly growing mycobacteria (RGM). Many RGM cause soft tissue and orthopedic hardware infection, particularly after trauma. RGM species identification remains challenging with few genetic differences between species. Methods We describe a case involving RGM. We report results of matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry (Bruker Biotyper), sequencing of rpoB, erm(39), and 16S rRNA genes, and antibiotic susceptibility testing (AST). We review previous reports describing similar RGM infections. Results A 58-year-old male sustained multiple fractures and right thigh compartment syndrome after a motorcycle accident. He underwent fasciotomy and multi-stage surgical fixations. 3 months later, he had wound dehiscence, purulence and multiple fluid collections of his right leg and knee requiring surgical drainage and removal of orthopedic hardware. After 4 days, acid-fast bacilli grew on routine bacterial culture media. MALDI-TOF identified the isolate as Mycobacterium mageritense. In contrast, sequencing of 16S rRNA (100% identity) and erm(39) (> 99% identity) identified the isolate as Mycobacterium houstonense; erm(39) only had 80% similarity with Mycobacterium fortuitum. Sequencing of rpoB showed a 19 bp difference with the M. houstonense type strain, and showed similarity to M. fortuitum (97.64%) than M. houstonense (97.45%). AST demonstrated resistance to clarithromycin only. After initial treatment with imipenem, ciprofloxacin, and doxycycline, definite therapy with ciprofloxacin and doxycycline was successful. In the literature, we found one case each of M. mageritense and M. houstonense infection after trauma. Conclusion This case highlights the importance of RGM other than M. fortuitum as a cause of soft tissue and orthopedic hardware infections, and illustrates the difficulty of identifying them to the species level. Sequencing of erm(39) and 16S rRNA gene identified the isolate as M. houstonense, but the larger difference (>2.5%) in rpoB sequence suggests a novel species. Further characterization is underway. Efforts to determine RGM species and antibiotic susceptibility give important insight into diagnosis and management. Disclosures All authors: No reported disclosures.


2006 ◽  
Vol 53 (8) ◽  
pp. 139-147 ◽  
Author(s):  
B. Calli ◽  
S. Durmaz ◽  
B. Mertoglu

To identify the microbial communities in Istanbul, Odayeri Municipal Solid Waste Landfill, leachate samples were collected from different sections at different stabilization phases. In identification of microbial communities in leachate samples, molecular techniques such as FISH, DGGE and cloning based on 16S rRNA and mcrA genes were used. As the chemical and microbiological compositions of the samples were compared, obvious correlations were found between the stability of the landfill section and abundance of active methanogens. On the other hand, there were considerable differences between acidogenic and mature leachate samples in DGGE profiles of archaeal and bacterial 16S rRNA genes. Moreover, in acidogenic leachate samples having BOD5/COD ratio of about 0.5 acetate utilizing Methanosarcina and Methanosaeta species were intensively detected in FISH. Although only very few H2-utilizing methanogens were identified with FISH analysis, most of the clones isolated from mature leachate samples clustered within H2-utilizing Methanobacteriales and Methanomicrobiales according to phylogenetic analysis of 16S rRNA and mcrA clones, respectively.


Archaea ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Wei-Yu Chen ◽  
Lucia Kraková ◽  
Jer-Horng Wu ◽  
Domenico Pangallo ◽  
Lenka Jeszeová ◽  
...  

Tetramethylammonium-degrading methanogenic consortia from a complete-mixing suspended sludge (CMSS) and an upflow anaerobic sludge blanket (UASB) reactors were studied using multiple PCR-based molecular techniques and shotgun proteomic approach. The prokaryotic 16S rRNA genes of the consortia were analyzed by quantitative PCR, high-throughput sequencing, and DGGE-cloning methods. The results showed that methanogenicarchaeawere highly predominant in both reactors but differed markedly according to community structure. Community and proteomic analysis revealed thatMethanomethylovoransandMethanosarcinawere the major players for the demethylation of methylated substrates and methane formation through the reduction pathway of methyl-S-CoM and possibly, acetyl-CoA synthase/decarbonylase-related pathways. Unlike high dominance of oneMethanomethylovoranspopulation in the CMSS reactor, diverse methylotrophicMethanosarcinaspecies inhabited in syntrophy-like association with hydrogenotrophicMethanobacteriumin the granular sludge of UASB reactor. The overall findings indicated the reactor-dependent community structures of quaternary amines degradation and provided microbial insight for the improved understanding of engineering application.


2006 ◽  
Vol 72 (7) ◽  
pp. 5077-5082 ◽  
Author(s):  
Thomas A. Auchtung ◽  
Cristina D. Takacs-Vesbach ◽  
Colleen M. Cavanaugh

ABSTRACT The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.


2005 ◽  
Vol 51 (10) ◽  
pp. 881-886 ◽  
Author(s):  
Lianbing Lin ◽  
Jie Zhang ◽  
Yunlin Wei ◽  
Chaoyin Chen ◽  
Qian Peng

Several Thermus strains were isolated from 10 hot springs of the Rehai geothermal area in Tengchong, Yunnan province. The diversity of Thermus strains was examined by sequencing the 16S rRNA genes and comparing their sequences. Phylogenetic analysis showed that the 16S rDNA sequences from the Rehai geothermal isolates form four branches in the phylogenetic tree and had greater than 95.9% similarity in the phylogroup. Secondary structure comparison also indicated that the 16S rRNA from the Rehai geothermal isolates have unique secondary structure characteristics in helix 6, helix 9, and helix 10 (reference to Escherichia coli). This research is the first attempt to reveal the diversity of Thermus strains that are distributed in the Rehai geothermal area.Key words: Thermus, diversity, phylogenetic analysis, RNA secondary structure.


2012 ◽  
Vol 79 (3) ◽  
pp. 915-923 ◽  
Author(s):  
Alexander Y. Merkel ◽  
Julie A. Huber ◽  
Nikolay A. Chernyh ◽  
Elizaveta A. Bonch-Osmolovskaya ◽  
Alexander V. Lebedinsky

ABSTRACTThe anaerobic oxidation of methane (AOM) is carried out by a globally distributed group of uncultivatedEuryarchaeota, the anaerobic methanotrophic arachaea (ANME). In this work, we used G+C analysis of 16S rRNA genes to identify a putatively thermophilic ANME group and applied newly designed primers to study its distribution in low-temperature diffuse vent fluids from deep-sea hydrothermal vents. We found that the G+C content of the 16S rRNA genes (PGC) is significantly higher in the ANME-1GBa group than in other ANME groups. Based on the positive correlation between thePGCand optimal growth temperatures (Topt) of archaea, we hypothesize that the ANME-1GBa group is adapted to thrive at high temperatures. We designed specific 16S rRNA gene-targeted primers for the ANME-1 cluster to detect all phylogenetic groups within this cluster, including the deeply branching ANME-1GBa group. The primers were successfully tested bothin silicoand in experiments with sediment samples where ANME-1 phylotypes had previously been detected. The primers were further used to screen for the ANME-1 microorganisms in diffuse vent fluid samples from deep-sea hydrothermal vents in the Pacific Ocean, and sequences belonging to the ANME-1 cluster were detected in four individual vents. Phylotypes belonging to the ANME-1GBa group dominated in clone libraries from three of these vents. Our findings provide evidence of existence of a putatively extremely thermophilic group of methanotrophic archaea that occur in geographically and geologically distinct marine hydrothermal habitats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Ma ◽  
Geng Wu ◽  
Jian Yang ◽  
Liuqin Huang ◽  
Dorji Phurbu ◽  
...  

Investigating the distribution of hydrogen-producing bacteria (HPB) is of great significance to understanding the source of biological hydrogen production in geothermal environments. Here, we explored the compositions of HPB populations in the sediments of hot springs from the Daggyai, Quzhuomu, Quseyongba, and Moluojiang geothermal zones on the Tibetan Plateau, with the use of Illumina MiSeq high-throughput sequencing of 16S rRNA genes and hydA genes. In the present study, the hydA genes were successfully amplified from the hot springs with a temperature of 46–87°C. The hydA gene phylogenetic analysis showed that the top three phyla of the HPB populations were Bacteroidetes (14.48%), Spirochaetes (14.12%), and Thermotogae (10.45%), while Proteobacteria were absent in the top 10 of the HPB populations, although Proteobacteria were dominant in the 16S rRNA gene sequences. Canonical correspondence analysis results indicate that the HPB community structure in the studied Tibetan hot springs was correlated with various environmental factors, such as temperature, pH, and elevation. The HPB community structure also showed a spatial distribution pattern; samples from the same area showed similar community structures. Furthermore, one HPB isolate affiliated with Firmicutes was obtained and demonstrated the capacity of hydrogen production. These results are important for us to understand the distribution and function of HPB in hot springs.


Sign in / Sign up

Export Citation Format

Share Document