Cognitive Agent Based Data Synchronization in Ubiquitous Networks

Author(s):  
Lokesh B. Bhajantri ◽  
Vasudha V. Ayyannavar

In the recent past, some research works are focused on the design and management of ubiquitous networks (UNs) in terms of performance metrics like routing, computation overhead, latency, and security. Nowadays, data synchronization is one of the most challenging tasks in UNs to ensure the data consistency between the nodes or devices and servers. In this work, the authors present an overview of the UNs, including issues and challenges, cognitive agents, synchronization algorithms, and proposed data synchronization model using cognitive agents. This review article classifies some of the data synchronization algorithms into four categories named: synchronization based on the message digest; timestamp based synchronization; synchronization based on scalability performance; and delta synchronization with their relative performance. This article also compares synchronization algorithms against data synchronization in terms of accuracy, efficiency, scalability, consistency, and control overheads. The authors provide the model of cognitive agent-based data synchronization in UNs, which ensures the network performance in terms of reliability, energy efficient, accuracy, scalable, fault tolerant, and QoS based data synchronization algorithms using cognitive agents.

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2992
Author(s):  
Niharika Singh ◽  
Irraivan Elamvazuthi ◽  
Perumal Nallagownden ◽  
Gobbi Ramasamy ◽  
Ajay Jangra

Microgrids help to achieve power balance and energy allocation optimality for the defined load networks. One of the major challenges associated with microgrids is the design and implementation of a suitable communication-control architecture that can coordinate actions with system operating conditions. In this paper, the focus is to enhance the intelligence of microgrid networks using a multi-agent system while validation is carried out using network performance metrics i.e., delay, throughput, jitter, and queuing. Network performance is analyzed for the small, medium and large scale microgrid using Institute of Electrical and Electronics Engineers (IEEE) test systems. In this paper, multi-agent-based Bellman routing (MABR) is proposed where the Bellman–Ford algorithm serves the system operating conditions to command the actions of multiple agents installed over the overlay microgrid network. The proposed agent-based routing focuses on calculating the shortest path to a given destination to improve network quality and communication reliability. The algorithm is defined for the distributed nature of the microgrid for an ideal communication network and for two cases of fault injected to the network. From this model, up to 35%–43.3% improvement was achieved in the network delay performance based on the Constant Bit Rate (CBR) traffic model for microgrids.


Author(s):  
Maryam Faraji

Unmanned aerial systems (UASs) create an extensive fighting capability of the developed military forces. Particularly, these systems carrying confidential data are exposed to security attacks. By the wireless’s nature within these networks, they become susceptible to different kinds of attacks, hence, it seems essential to design the appropriate safety mechanism in such networks. The sinkhole attack is one of the most dangerous and threatening attacks amongst types of attack in UAS. A malicious UAV exists in such a threat attacking as a black hole for absorbing all traffic in the network. Mainly, in a Flow-based protocol, the attacker considers the requests on the route, then, it replies to the target UAV such as high quality or the best route towards Gard station. The malicious UAV is able to only insert itself on one occasion between the nodes relating to each other (such as sink node and sensor node), and act for passing packets among them. In this study, the malicious attacks are detected and purged using two stages were. In the first stage, some principles and rules are used to detect black hole, gray hole, and sinkhole attacks. In the second stage, using a smart agent-based strategy negotiation procedure for three steps, a defense mechanism is designed to prevent these attacks. The smart agent is used by reliable neighbors via the negotiation procedure for three steps, hence, the traffic formed by the malicious UAV is not considered. The suggested protocol is called SAUAS. Here, the technique is assessed through extensive simulations performed in the NS-3 environment. Based on the simulation outcomes, it is indicated that the UAS network performance metrics are enhanced based on the packet delivery rate, detection rate, false-negative rate and false-positive rate.


2013 ◽  
Vol 5 (3) ◽  
pp. 1-13 ◽  
Author(s):  
Alexander G. Madey

Unmanned aerial vehicles (UAVs) are being widely used for both military and civilian purposes. The advent of smaller, lighter, less expensive UAVs opens opportunities to deploy a large number of small, semi-autonomous UAVs in a cohesive group or “swarm”. Swarms offer numerous advantages over single UAVs, such as higher coverage, redundancy in numbers and reduced long-range bandwidth requirements. Engineering a swarm requires designing the swarming behavior and finding effective ways to control the behavior so that the swarm can be directed to complete its mission. This paper presents an approach to developing UAV swarming behaviors and command and control (C2) strategies to govern them. The agent-based modeling toolkit NetLogo is used to create two mission types: contaminant plume mapping and vessel tracking. Performance metrics are used to evaluate success as parameters are changed. This research demonstrates the potential usefulness of agent-based modeling in the engineering of UAV swarms.


2020 ◽  
Vol 11 (3) ◽  
pp. 22-41
Author(s):  
Rajendra Kumar Dwivedi ◽  
Rakesh Kumar

Wireless sensor networks find several applications in hard-to-reach areas. As sensors have limited battery power, many energy aware protocols based on negotiation, clustering, and agents have been developed to increase lifetime of the network. This article finds limitation with some multi-agent-based protocols as they place the sink node at the centre of the monitoring region which is quite difficult in hard-to-reach areas. Therefore, a multi-agent-based energy and fault-aware protocol for hard-to-reach territories (MAHT) is proposed which uses technique of impact factor to identify the high power capability of the central node and dynamic itinerary planning to make the protocol fault tolerant. Its agent migration technique results in improvement ofn energy efficiency, task completion time and network lifetime. MAHT is simulated using Castalia simulator and the impact of payload size, network size, node failures, etc., on various performance metrics is analysed. The proposed protocol found outperforming over the existing ones.


2011 ◽  
Vol 21 (04) ◽  
pp. 379-396 ◽  
Author(s):  
BLESSON VARGHESE ◽  
GERARD MCKEE ◽  
VASSIL ALEXANDROV

The work reported in this paper is motivated towards validating an alternative approach for fault tolerance over traditional methods like checkpointing that constrain efficacious fault tolerance. Can agent intelligence be used to achieve fault tolerant parallel computing systems? If so, "What agent capabilities are required for fault tolerance?", "What parallel computational tasks can benefit from such agent capabilities?" and "How can agent capabilities be implemented for fault tolerance?" need to be addressed. Cognitive capabilities essential for achieving fault tolerance through agents are considered. Parallel reduction algorithms are identified as a class of algorithms that can benefit from cognitive agent capabilities. The Message Passing Interface is utilized for implementing an intelligent agent based approach. Preliminary results obtained from the experiments validate the feasibility of an agent based approach for achieving fault tolerance in parallel computing systems.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Vaughan Murphy ◽  
Brandon P. R. Edmonds ◽  
Ana Luisa Trejos

Twisted coiled actuators (TCAs) are a type of soft actuator made from polymer fibres such as nylon sewing thread. As they provide motion in a compact, lightweight, and flexible package, they provide a solution to the actuation of wearable mechatronic devices for motion assistance. Their limitation is that they provide low total force, requiring them to actuate in parallel with multiple units. Previous literature has shown that the force and stroke production can be improved by incorporating them into fabric meshes. A fabric mesh could also improve the contraction efficiency, strain rate, and user comfort. Therefore, this study focused on measuring these performance metrics for a set of TCAs embedded into a woven fabric mesh. The experimental results show that the stroke of the actuators scaled linearly with the number of activated TCAs, achieving a maximum applied force of 11.28 N, a maximum stroke of 12.23%, and an efficiency of 1.8%. Additionally, two control methods were developed and evaluated, resulting in low overshoot and steady-state error. These results indicate that the designed actuators are viable for use in wearable mechatronic devices, since they can scale to meet different requirements, while being able to be accurately controlled with minimal additional components.


2017 ◽  
Vol 26 (03) ◽  
pp. 1750002
Author(s):  
Fouad Hanna ◽  
Lionel Droz-Bartholet ◽  
Jean-Christophe Lapayre

The consensus problem has become a key issue in the field of collaborative telemedicine systems because of the need to guarantee the consistency of shared data. In this paper, we focus on the performance of consensus algorithms. First, we studied, in the literature, the most well-known algorithms in the domain. Experiments on these algorithms allowed us to propose a new algorithm that enhances the performance of consensus in different situations. During 2014, we presented our very first initial thoughts to enhance the performance of the consensus algorithms, but the proposed solution gave very moderate results. The goal of this paper is to present a new enhanced consensus algorithm, named Fouad, Lionel and J.-Christophe (FLC). This new algorithm was built on the architecture of the Mostefaoui-Raynal (MR) consensus algorithm and integrates new features and some known techniques in order to enhance the performance of consensus in situations where process crashes are present in the system. The results from our experiments running on the simulation platform Neko show that the FLC algorithm gives the best performance when using a multicast network model on different scenarios: in the first scenario, where there are no process crashes nor wrong suspicion, and even in the second one, where multiple simultaneous process crashes take place in the system.


2021 ◽  
pp. 1-27
Author(s):  
Saddam Hocine Derrouaoui ◽  
Yasser Bouzid ◽  
Mohamed Guiatni ◽  
Islam Dib

Recently, reconfigurable drones have gained particular attention in the field of automation and flying robots. Unlike the conventional drones, they are characterized by a variable mechanical structure in flight, geometric adaptability, aerial reconfiguration, high number of actuators and control inputs, and variable mathematical model. In addition, they are exploited to flight in more cluttered environments, avoid collisions with obstacles, transport and grab objects, cross narrow and small spaces, decrease different aerial damages, optimize the consumed energy, and improve agility and maneuverability in flight. Moreover, these new drones are considered as a viable solution to provide them with specific and additional functionalities. They are a promising solution in the near future, since they allow increasing considerably the capabilities and performance of classical drones in terms of multi-functionalities, geometric adaptation, design characteristics, consumed energy, control, maneuverability, agility, efficiency, obstacles avoidance, and fault tolerant control. This paper explores very interesting and recent research works, which include the classification, the main characteristics, the various applications, and the existing designs of this particular class of drones. Besides, an in-depth review of the applied control strategies will be presented. The links of the videos displaying the results of these researches will be also shown. A comparative study between the different types of flying vehicles will be established. Finally, several new challenges and future directions for reconfigurable drones will be discussed.


2003 ◽  
Vol 36 (3) ◽  
pp. 249-254
Author(s):  
Daniel Frey ◽  
Jens Nimis ◽  
Heinz Wörn ◽  
Peter Lockemann

Sign in / Sign up

Export Citation Format

Share Document