A Time Efficient Clustering Algorithm for Gray Scale Image Segmentation

Author(s):  
Nihar Ranjan Nayak ◽  
Bikram Keshari Mishra ◽  
Amiya Kumar Rath ◽  
Sagarika Swain

The goal of image segmentation is to assign every image pixels into their respective sections that share a common visual characteristic. In this paper, the authors have evaluated the performances of three different clustering algorithms – the classical K-Means, a modified Watershed segmentation as proposed by A. R. Kavitha et al., (2010) and their proposed Improved Clustering method normally used for gray scale image segmentation. The authors have analyzed the performance measure which affects the result of gray scale segmentation by considering three very important quality measures that is – Structural Content (SC) and Root Mean Square Error (RMSE) and Peak Signal to Noise Ratio (PSNR) as suggested by Jaskirat et al., (2012). Experimental result shows that, the proposed method gives remarkable consequence for the computed values of SC, RMSE and PSNR as compared to K-Means and modified Watershed segmentation. In addition to this, the end result of segmentation by means of the Proposed technique reduces the computational time as compared to the other two approaches irrespective of any input images.

Author(s):  
R. R. Gharieb ◽  
G. Gendy ◽  
H. Selim

In this paper, the standard hard C-means (HCM) clustering approach to image segmentation is modified by incorporating weighted membership Kullback–Leibler (KL) divergence and local data information into the HCM objective function. The membership KL divergence, used for fuzzification, measures the proximity between each cluster membership function of a pixel and the locally-smoothed value of the membership in the pixel vicinity. The fuzzification weight is a function of the pixel to cluster-centers distances. The used pixel to a cluster-center distance is composed of the original pixel data distance plus a fraction of the distance generated from the locally-smoothed pixel data. It is shown that the obtained membership function of a pixel is proportional to the locally-smoothed membership function of this pixel multiplied by an exponentially distributed function of the minus pixel distance relative to the minimum distance provided by the nearest cluster-center to the pixel. Therefore, since incorporating the locally-smoothed membership and data information in addition to the relative distance, which is more tolerant to additive noise than the absolute distance, the proposed algorithm has a threefold noise-handling process. The presented algorithm, named local data and membership KL divergence based fuzzy C-means (LDMKLFCM), is tested by synthetic and real-world noisy images and its results are compared with those of several FCM-based clustering algorithms.


2013 ◽  
Vol 380-384 ◽  
pp. 1488-1494
Author(s):  
Wang Wei ◽  
Jin Yue Peng

In the research and development of intelligence system, clustering analysis is a very important problem. According to the new direct clustering algorithm using similarity measure of Vague sets as evaluation criteria presented by paper, the Vague direct clustering method are used to analysis using different similarity measure of Vague sets. The experimental result shows that the direct clustering method based on the similarity of Vague sets is effective, and the direct clustering method based on different similarity measure of Vague sets is the same basically, but difference on the steps of clustering. To select different algorithms according different conditions in the work of the actual applications.


Author(s):  
Hui Du ◽  
Yuping Wang ◽  
Xiaopan Dong

Clustering is a popular and effective method for image segmentation. However, existing cluster methods often suffer the following problems: (1) Need a huge space and a lot of computation when the input data are large. (2) Need to assign some parameters (e.g. number of clusters) in advance which will affect the clustering results greatly. To save the space and computation, reduce the sensitivity of the parameters, and improve the effectiveness and efficiency of the clustering algorithms, we construct a new clustering algorithm for image segmentation. The new algorithm consists of two phases: coarsening clustering and exact clustering. First, we use Affinity Propagation (AP) algorithm for coarsening. Specifically, in order to save the space and computational cost, we only compute the similarity between each point and its t nearest neighbors, and get a condensed similarity matrix (with only t columns, where t << N and N is the number of data points). Second, to further improve the efficiency and effectiveness of the proposed algorithm, the Self-tuning Spectral Clustering (SSC) is used to the resulted points (the representative points gotten in the first phase) to do the exact clustering. As a result, the proposed algorithm can quickly and precisely realize the clustering for texture image segmentation. The experimental results show that the proposed algorithm is more efficient than the compared algorithms FCM, K-means and SOM.


Author(s):  
Debby Cintia Ganesha Putri ◽  
Jenq-Shiou Leu ◽  
Pavel Seda

This research aims to determine the similarities in groups of people to build a film recommender system for users. Users often have difficulty in finding suitable movies due to the increasing amount of movie information. The recommender system is very useful for helping customers choose a preferred movie with the existing features. In this study, the recommender system development is established by using several algorithms to obtain groupings, such as the K-Means algorithm, birch algorithm, mini-batch K-Means algorithm, mean-shift algorithm, affinity propagation algorithm, agglomerative clustering algorithm, and spectral clustering algorithm. We propose methods optimizing K so that each cluster may not significantly increase variance. We are limited to using groupings based on Genre and, Tags for movies. This research can discover better methods for evaluating clustering algorithms. To verify the quality of the recommender system, we adopted the mean square error (MSE), such as the Dunn Matrix and Cluster Validity Indices, and social network analysis (SNA), such as Degree Centrality, Closeness Centrality, and Betweenness Centrality. We also used Average Similarity, Computational Time, Association Rule with Apriori algorithm, and Clustering Performance Evaluation as evaluation measures to compare method performance of recommender systems using Silhouette Coefficient, Calinski-Harabaz Index, and Davies-Bouldin Index.


2021 ◽  
Author(s):  
Lujia Lei ◽  
Chengmao Wu ◽  
Xiaoping Tian

Abstract Clustering algorithms with deep neural network have attracted wide attention of scholars. A deep fuzzy K-means clustering algorithm model with adaptive loss function and entropy regularization (DFKM) is proposed by combining automatic encoder and clustering algorithm. Although it introduces adaptive loss function and entropy regularization to improve the robustness of the model, its segmentation effect is not ideal for high noise; At the same time, its model does not use a convolutional auto-encoder, which is not suitable for high-dimensional images.Therefore, on the basis of DFKM, this paper focus on image segmentation, combine neighborhood median and mean information of current pixel, introduce neighborhood information of membership degree, and extend Euclidean distance to kernel space by using kernel function, propose a dual-neighborhood information constrained deep fuzzy clustering based on kernel function (KDFKMS). A large number of experimental results show that compared with DFKM and classical image segmentation algorithms, this algorithm has stronger anti-noise robustness.


Author(s):  
Dhanalakshmi Samiappan ◽  
S. Latha ◽  
T. Rama Rao ◽  
Deepak Verma ◽  
CSA Sriharsha

Enhancing the image to remove noise, preserving the useful features and edges are the most important tasks in image analysis. In this paper, Significant Cluster Identification for Maximum Edge Preservation (SCI-MEP), which works in parallel with clustering algorithms and improved efficiency of the machine learning aptitude, is proposed. Affinity propagation (AP) is a base method to obtain clusters from a learnt dictionary, with an adaptive window selection, which are then refined using SCI-MEP to preserve the semantic components of the image. Since only the significant clusters are worked upon, the computational time drastically reduces. The flexibility of SCI-MEP allows it to be integrated with any clustering algorithm to improve its efficiency. The method is tested and verified to remove Gaussian noise, rain noise and speckle noise from images. Our results have shown that SCI-MEP considerably optimizes the existing algorithms in terms of performance evaluation metrics.


Author(s):  
Lamine Benrais ◽  
Nadia Baha

The K-means is a popular clustering algorithm known for its simplicity and efficiency. However the elapsed computation time is one of its main weaknesses. In this paper, the authors use the K-means algorithm to segment grayscale images. Their aim is to reduce the computation time elapsed in the K-means algorithm by using a grayscale histogram without loss of accuracy in calculating the clusters centers. The main idea consists of calculating the histogram of the original image, applying the K-means on the histogram until the equilibrium state is reached, and computing the clusters centers then the authors use the clusters centers to run the K-means for a single iteration. Tests of accuracy and computational time are presented to show the advantages and inconveniences of the proposed method.


Author(s):  
Dariusz Malyszko ◽  
Jaroslaw Stepaniuk

Clustering understood as a data grouping technique represents fundamental procedures in image processing. The present chapter’s concerns are combining the concept of rough sets and entropy measures in the area of image segmentation. In this context, comprehensive investigations into rough set entropy based clustering image segmentation techniques have been performed. Segmentation presents low-level image transformation routines concerned with image partitioning into distinct disjoint and homogenous regions. In the area of segmentation routines, threshold based algorithms and clustering algorithms most often are applied in practical solutions when there is a pressing need for simplicity and robustness. Rough entropy threshold based segmentation algorithms simultaneously combine optimal threshold determination with rough region approximations and region entropy measures. In the present chapter, new algorithmic schemes RECA in the area of rough entropy based partitioning routines have been proposed. Rough entropy clustering incorporates the notion of rough entropy into clustering models, taking advantage of dealing with some degree of uncertainty in analyzed data. RECA algorithmic schemes performed usually equally robust compared to standard k-means algorithms. At the same time, in many runs they yielded slightly better performances making possible future implementation in clustering applications.


Biometrics ◽  
2017 ◽  
pp. 1788-1802 ◽  
Author(s):  
Nihar Ranjan Nayak ◽  
Bikram Keshari Mishra ◽  
Amiya Kumar Rath ◽  
Sagarika Swain

The findings of image segmentation reflects its expansive applications and existence in the field of digital image processing, so it has been addressed by many researchers in numerous disciplines. It has a crucial impact on the overall performance of the intended scheme. The goal of image segmentation is to assign every image pixels into their respective sections that share a common visual characteristic. In this paper, the authors have evaluated the performances of three different clustering algorithms normally used in image segmentation – the typical K-Means, its modified K-Means++ and their proposed Enhanced Clustering method. The idea is to present a brief explanation of the fundamental working principles implicated in these methods. They have analyzed the performance criterion which affects the outcome of segmentation by considering two vital quality measures namely – Structural Content (SC) and Root Mean Square Error (RMSE) as suggested by Jaskirat et al., (2012). Experimental result shows that, the proposed method gives impressive result for the computed values of SC and RMSE as compared to K-Means and K-Means++. In addition to this, the output of segmentation using the Enhanced technique reduces the overall execution time as compared to the other two approaches irrespective of any image size.


Sign in / Sign up

Export Citation Format

Share Document